Brain Evolution as an Information Flow Designer: The Ground Architecture for Biological and Artificial General Intelligence

  • Shuichi Shigeno
Part of the Diversity and Commonality in Animals book series (DCA)


For centuries, neuroscientists have identified a number of neural systems involved in sensory, motor, state control, and cognitive functions. Modern comparative studies have proposed their diversity, origins, and basic functionality across animal phyla. Despite a number of attempts, however, a common functional plan of the complex brain remains controversial. For example, there is currently no prominent theory of how neural networks are structurally comparable between phylogenetically distant animals such as vertebrates, octopuses, worms, and insects, in which there are distinguishably different brain architectures. This chapter attempts to identify the types of information flow patterns that were specialized during brain evolution, when these patterns appeared as a prototype, and how the flow systems have been shaped based on the common morphological architecture. In a notable case, a number of sensory associative centers show comparable patterns in mammalian, insect, and octopus brains, representing a common input and output flow of information. One can speculate that a common underlying structure is shared between various animals because of common functionalities that produce highly effective learning, memory, and autonomous cognitive tasks. Such an underlying structure could help establish a large-scale framework for comparison between phylogenetically distant animal brains and perhaps even form the groundwork for artificial general intelligence.


Brain Neuronal network Brain diversity Evolution 


  1. Ahrens M, Li MJ, Orger MB, Robson DN, Schier AF, Engert F, Portugues R (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature (Lond) 485:471–479Google Scholar
  2. Arendt D (2008) The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 9:868–882PubMedCrossRefGoogle Scholar
  3. Arendt D, Nübler-Jung K (1996) Common ground plans in early development in mice and flies. Bioessays 18:255–258PubMedCrossRefGoogle Scholar
  4. Arendt D, Tosches MA, Marlow H (2015) From nerve net to nerve ring, nerve cord and brain: evolution of the nervous system. Nat Rev Neurosci 17:61–72CrossRefGoogle Scholar
  5. Aristotle, De Anima [On the Soul] (350BCE) Delphi complete works of Aristotle, illustrated, Delphi ancient classics book 11, English edn. (2013) Amazon Ser Int, IncGoogle Scholar
  6. Baars BJ (1988) A cognitive theory of consciousness. Cambridge University Press, New YorkGoogle Scholar
  7. Baars BJ (2002) The conscious access hypothesis: origins and recent evidence. Trends Cogn Sci 6:47–52PubMedCrossRefGoogle Scholar
  8. Baars BJ, Franklin S, Ramsoy TZ (2013) Global workspace dynamics: cortical “binding and propagation” enables conscious contents. Front Psychol 4:200PubMedPubMedCentralGoogle Scholar
  9. Bejan A, Lorente S (2008) Design with constructal theory. Wiley, HobokenCrossRefGoogle Scholar
  10. Bejan A, Lorente S (2010) The constructal law of design and evolution in nature. Philos Trans R Soc Lond B 365:1335–1347CrossRefGoogle Scholar
  11. Bengio Y (2009) Learning deep architectures for AI. Found Trend Mach Learn 2:1–127CrossRefGoogle Scholar
  12. Block HD (1962) The perceptron: a model for brain functioning. Rev Mod Phys 34:123–135CrossRefGoogle Scholar
  13. Borden NM, Forseen SE, Cristian S (2016) Imaging anatomy of the human brain. A comprehensive atlas including adjacent structure. Demos Medical, New YorkGoogle Scholar
  14. Braitenberg V (1984) Vehicles: experiments in synthetic psychology. Bradford/MIT Press, CambridgeGoogle Scholar
  15. Bullock TH (1993) How are more complex brains different. Brain Behav Evol 41:88–96PubMedCrossRefGoogle Scholar
  16. Bullock TH (2002) Grades in neural complexity: how large is the span? Integr Comp Biol 42:757–761CrossRefGoogle Scholar
  17. Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates, vol I, II. Freeman, LondonGoogle Scholar
  18. Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation, 2nd edn. Wiley-Liss, New YorkCrossRefGoogle Scholar
  19. Cajal SR (1890) New ideas on the structure of the nervous system in man and vertebrates. English translation, Swanson N, Swanson LW (1990) MIT Press, CambridgeGoogle Scholar
  20. Cajal SR (1917) Histologie du système nerveux de l’homme et des vertèbrès, 2 vols. Translated by Azoulay L, Maloine A, Paris. English translation, Swanson N, Swanson LW (1995) Histology of the nervous system of man and vertebrates, 2 vols. Oxford University Press, New YorkGoogle Scholar
  21. Crick F, Koch C (1990) Towards a neurobiological theory of consciousness. Semin Neurosci 2:273–304Google Scholar
  22. Damasio AR (2000) The feeling of what happens: body and emotion in the making of consciousness. Vintage Books, LondonGoogle Scholar
  23. Darmaillacq AS, Dickel L, Mather J (2014) Cephalopod cognition. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Dehaene S, Kerszberg M, Changeux JP (1998) A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA 95:14529–14534PubMedPubMedCentralCrossRefGoogle Scholar
  25. Denes AS, Jekely G, Steinmetz PR, Raible F, Snyman H, Prud’homme B, Ferrier DE, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell 129:277–288PubMedCrossRefGoogle Scholar
  26. Descartes R (1644) The principles of philosophy. Translation with explanatory notes. Rodger V, Miller RP, Reprint edition (1983). Reidel, DordrechtGoogle Scholar
  27. Dugas-Ford J, Rowell JJ, Ragsdale CW (2012) Cell-type homologies and the origins of the neocortex. Proc Natl Acad Sci USA 109:16974–16979PubMedPubMedCentralCrossRefGoogle Scholar
  28. Eames C, Eames R, Fleck G, Cohen IB, Staples R (1990) A computer perspective: background to the computer age. Revised subject edition. Harvard University Press, HarvardGoogle Scholar
  29. Ebbesson SOE (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213:179–212PubMedGoogle Scholar
  30. Edelman DB, Seth AK (2009) Animal consciousness: a synthetic approach. Trends Neurosci 32:476–484PubMedCrossRefGoogle Scholar
  31. Edelman GM, Tononi G (2000) A universe of consciousness: how matter becomes imagination. Basic Books, New YorkGoogle Scholar
  32. Edelman DB, Baars BJ, Seth AK (2005) Identifying hallmarks of consciousness in non-mammalian species. Conscious Cogn 14:169–187PubMedCrossRefGoogle Scholar
  33. Faller S, Rothe BH, Todt C, Schmidt-Rhaesa A, Loesel R (2012) Comparative neuroanatomy of Caudofoveata, Solenogastres, Polyplacophora, and Scaphopoda (Mollusca) and its phylogenetic implications. Zoomorphology 131:149–170CrossRefGoogle Scholar
  34. Farris SM (2008) Evolutionary convergence of higher brain centers spanning the protostome-deuterostome boundary. Brain Behav Evol 72:106–122PubMedCrossRefGoogle Scholar
  35. Farris SM, Strausfeld NJ (2001) Development of laminar organization in the mushroom bodies of the cockroach: Kenyon cell proliferation, outgrowth, and maturation. J Comp Neurol 439:331–351PubMedCrossRefGoogle Scholar
  36. Feinberg TE, Mallatt J (2013) The evolutionary and genetic origins of consciousness in the Cambrian period over 500 million years ago. Front Psychol 4:667PubMedPubMedCentralCrossRefGoogle Scholar
  37. Franklin S (2003) IDA: a conscious artifact? In: Holland O (ed) Machine consciousness. Imprint Academic, ExeterGoogle Scholar
  38. Franklin S, Strain S, Snaider J, McCall R, Faghihi U (2012) Global workspace theory, its LIDA model and the underlying neuroscience. Biol Insp Cogn Arch 1:32–43Google Scholar
  39. Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36:193–202PubMedCrossRefGoogle Scholar
  40. Goerick C (2009) Towards cognitive robotics. In: Sendhoff B, Koerner E, Sporns O, Ritter H, Doya K (eds) Creating brain-like intelligence. From basic principles to complex intelligent systems. Springer, Heidelberg, pp 192–214CrossRefGoogle Scholar
  41. Grasso FW (2014) The octopus with two brains: how are distributed and central representations integrated in the octopus central nervous system? In: Darmaillacq A-S, Dickel L, Mather J (eds) Cephalopod cognition. Cambridge University, Cambridge, pp 94–122CrossRefGoogle Scholar
  42. Graves A, Wayne G, Danihelka I (2014) Neural turing machines. arXiv preprint arXiv:1410.5401Google Scholar
  43. Hanström B (1928) Vergleichende Anatomie des Nervensystems der Wirbellosen Tiere unter Beruecksichtigung Seiner Funktion. Julius Springer, New YorkGoogle Scholar
  44. Hartenstein V (2006) The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190:555–570PubMedCrossRefGoogle Scholar
  45. Hatchuel A, Weil B (2009) C-K design theory: an advanced formulation. Res Eng Des 19:181–192CrossRefGoogle Scholar
  46. Hegel GWF (1977) Phenomenology of spirit. Translation by Miller AV, Findlay JN. Clarendon Press, OxfordGoogle Scholar
  47. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275PubMedCrossRefGoogle Scholar
  48. Hejnol A, Martindale MQ (2008) Acoel development supports a simple planula-like urbilaterian. Philos Trans R Soc Lond B 363:1493–1501CrossRefGoogle Scholar
  49. Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguñà J, Bailly X, Jondelius U, Wiens M, Müller WG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc Lond B 276:4261–4270CrossRefGoogle Scholar
  50. Hochner B (2010) Functional and comparative assessments of the octopus learning and memory system. Front Biosci 2:764–771CrossRefGoogle Scholar
  51. Hochner B, Shomrat T, Fiorito G (2006) The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull 210:308–317PubMedCrossRefGoogle Scholar
  52. Holland ND (2003) Early central nervous system evolution: an era of skin brains? Nat Rev Neurosci 4:617–627PubMedCrossRefGoogle Scholar
  53. Holland ND (2016) Nervous systems and scenarios for the invertebrate-to-vertebrate transition. Philos Trans R Soc B 371:0. doi: 10.1098/rstb.2015.0047
  54. Honegger KS, Campbell RA, Turner GC (2011) Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. J Neurosci 31:11772–11785PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hubel DH, Wiesel TN (1963) Shape and arrangement of columns in cat’s striate cortex. J Physiol 165:559–568PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hume D (1748) An enquiry concerning human understanding: a critical edition. The Clarendon edition of the works of David Hume (2006), Beauchamp TL, ed. Oxford University Press, OxfordGoogle Scholar
  57. Husserl E (1913) Ideas pertaining to a pure phenomenology and to a phenomenological philosophy – first book: general introduction to a pure phenomenology, 1982. Kersten F, trans. Nijhoff Publisher, HagueGoogle Scholar
  58. Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Avian Brain Nomenclature Consortium (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159PubMedCrossRefGoogle Scholar
  59. Kaas JH (ed) (2006) Evolution of nervous systems. Vol. 1. Theories, development, invertebrates. Elsevier Academic Press, OxfordGoogle Scholar
  60. Kant I (1781) Critique of pure reason. In: Complete works of Immanuel Kant. Translated into English by Meiklejohn JMD (1998). Cambridge University Press, CambridgeGoogle Scholar
  61. Kant I (1788) Critique of practical reason. In: Complete works of Immanuel Kant. Translated into English by Meiklejohn JMD (1998). Cambridge University Press, CambridgeGoogle Scholar
  62. Karten HJ (1997) Evolutionary developmental biology meets the brain: the origins of mammalian cortex. Proc Natl Acad Sci USA 94:2800–2804PubMedPubMedCentralCrossRefGoogle Scholar
  63. Karten HJ (2013) Neocortical evolution: neuronal circuits arise independently of lamination. Curr Biol 7:12–15CrossRefGoogle Scholar
  64. Kohonen T (1995) Self-organizing maps. Springer, HeidelbergCrossRefGoogle Scholar
  65. Krubitzer L (2009) In search of a unifying theory of complex brain evolution. Ann NY Acad Sci 1156:44–67PubMedPubMedCentralCrossRefGoogle Scholar
  66. Laumer CE, Bekkouche N, Kerbl A, Goetz F, Neves RC, Sørensen MV, Kristensen RM, Hejnol A, Dunn CW, Giribet G, Worsaae K (2015) Spiralian phylogeny informs the evolution of microscopic lineages. Curr Biol 25:2000–2006PubMedCrossRefGoogle Scholar
  67. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature (Lond) 521:436–444CrossRefGoogle Scholar
  68. Locke J (1690) An essay concerning human understanding. Penguin Classics, new edition (2008). Oxford University Press, OxfordGoogle Scholar
  69. Mareschal D, Shultz TR (1996) Generative connectionist networks and constructivist cognitive development. Cogn Dev 11:571–603CrossRefGoogle Scholar
  70. Mather JA (2008) Cephalopod consciousness: behavioural evidence. Conscious Cogn 17:37–48PubMedCrossRefGoogle Scholar
  71. Merker B (2007) Consciousness without a cerebral cortex: a challenge for neuroscience and medicine. Behav Brain Sci 30:63–81, with discussion part pp 81–134PubMedGoogle Scholar
  72. Minsky ML, Papert SA (1988) Perceptrons: an introduction to computational geometry, expanded edition. MIT Press, CambridgeGoogle Scholar
  73. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature (Lond) 518:529–533CrossRefGoogle Scholar
  74. Moroz LL (2009) On the independent origins of complex brains and neurons. Brain Behav Evol 74:177–190PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mudrik L, Faivre N, Koch C (2014) Information integration without awareness. Trends Cogn Sci 18:488–496PubMedCrossRefGoogle Scholar
  76. Nguyen JP, Frederick B, Shipleya FB, Linderc AN, Plummer GS, Liu M, Setru SU, Shaevit JW, Leifer AM (2015) Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proc Natl Acad Sci USA 113(8):E1074–E1081PubMedPubMedCentralCrossRefGoogle Scholar
  77. Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates, 3rd edn. Springer, HeidelbergCrossRefGoogle Scholar
  78. Nixon M, Young JZ (2003) The brains and lives of cephalopods. University Press, OxfordGoogle Scholar
  79. Northcutt RG (2012) Evolution of centralized nervous systems: two schools of evolutionary thought. Proc Natl Acad Sci U S A 109:10626–10633PubMedPubMedCentralCrossRefGoogle Scholar
  80. Pani AM, Mullarkey EE, Aronowicz J, Assimacopoulos S, Grove EA, Lowe CJ (2012) Ancient deuterostome origins of vertebrate brain signaling centres. Nature (Lond) 483:289–294CrossRefGoogle Scholar
  81. Pfeifer R, Gomez G (2009) Morphological computation: connecting brain, body, and environment. In: Sendhoff B et al (eds) Creating brain-like intelligence. Springer, Berlin, pp 66–83CrossRefGoogle Scholar
  82. Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biological inspired robotics. Science 318:1088–1093PubMedCrossRefGoogle Scholar
  83. Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Queinnec E, Silva CD, Wincker P, Guyader HL, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Worheide G, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712PubMedCrossRefGoogle Scholar
  84. Plato (380BCE) Republic, Delphi complete works of Plato, illustrated, Delphi ancient classics book 5, English edition (2012) Amazon Serv Int, IncGoogle Scholar
  85. Poon CS, Shah JV (1998) Hebbian learning in parallel and modular memories. Biol Cybern 78:79–86PubMedCrossRefGoogle Scholar
  86. Puelles L, Rubenstein JL (2015) A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Front Neuroanat 9:27PubMedPubMedCentralCrossRefGoogle Scholar
  87. Reichert H, Simeone A (2001) Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Philos Trans R Soc Lond B 356:1533–1544CrossRefGoogle Scholar
  88. Reisinger E (1972) Die Evolution des Orthogons der Spiralier und das Archicoelomatenproblem. Zeitsch Zool System Evol 10:1–43CrossRefGoogle Scholar
  89. Roper CFE, Sweeney MJ (1984) FAO species catalogue. Vol 3. Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries. FAO, RomaGoogle Scholar
  90. Rosenblatt F (1957) The perceptron – a perceiving and recognizing automaton. Report 85-460-1, Cornell Aeronautical Lab, New YorkGoogle Scholar
  91. Rosenblatt F (1962) Principles of neurodynamics. Spartan, New YorkGoogle Scholar
  92. Roth G (2013) The long evolution of brains and minds. Springer, HeidelbergCrossRefGoogle Scholar
  93. Roth G, Wullimann MF (2001) Brain evolution and cognition. Wiley-Liss, BerlinGoogle Scholar
  94. Rubenstein JL, Shimamura K, Martinez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–478PubMedCrossRefGoogle Scholar
  95. Rumelhart DE, Hinton GE, Williams RJ (1986a) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, PDP research group (eds) Parallel distributed processing: explorations in the microstructure of cognition. Volume 1: Foundations. MIT Press, Cambridge, pp 318–362Google Scholar
  96. Rumelhart DE, McClelland JL, The PDP research group (eds) (1986b) Parallel distributed processing: explorations in the microstructure of cognition. Volume 1: Foundations. MIT Press, CambridgeGoogle Scholar
  97. Russell B (1921) The analysis of mind. George Allen & Unwin, LondonGoogle Scholar
  98. Schmidt-Rhaesa A, Harzsch S, Purschke G (2016) Structure and evolution of invertebrate nervous systems. Oxford University Press, OxfordGoogle Scholar
  99. Schneider GE (2014) Brain structure and its origins: in development and in evolution of behavior and the mind. MIT Press, CambridgeGoogle Scholar
  100. Sendhoff B, Koerner E, Sporns O, Ritter H, Doya K (eds) (2009) Creating brain-like intelligence. From basic principles to complex intelligent systems. Springer, HeidelbergGoogle Scholar
  101. Shanahan M (2006) A cognitive architecture that combines internal simulation with a global workspace. Conscious Cogn 15:433–449PubMedCrossRefGoogle Scholar
  102. Sherman SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17:417–422PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sherman SM, Guillery RW (1998) On the actions that one nerve cell can have on another: distinguishing ‘drivers’ from ‘modulators’. Proc Natl Acad Sci USA 95:7121–7126PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B 357:1695–1708CrossRefGoogle Scholar
  105. Sherman SM, Guillery RW (2006) Exploring the thalamus, 2nd edn. Academic, San DiegoGoogle Scholar
  106. Sherman SM, Guillery RW (2013) Functional connections of cortical areas. A new view from the thalamus. MIT Press, CambridgeCrossRefGoogle Scholar
  107. Shigeno S, Sasaki T, Boletzky SV (2010) The origins of cephalopod body plans: a geometrical and developmental basis for the evolution of vertebrate-like organ systems. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods—present and past. Tokai University Press, Tokyo, pp 23–34Google Scholar
  108. Shigeno S, Parnaik R, Albertin C, Ragsdale C (2015) Evidence for a cordal, not ganglionic, pattern of cephalopod brain neurogenesis. Zool Lett 1:26CrossRefGoogle Scholar
  109. Shomrat T, Graindorge N, Bellanger C, Fiorito G, Loewenstein Y, Hochner B (2011) Alternative sites of synaptic plasticity in two homologous “fan-out fan-in” learning and memory networks. Curr Biol 21:1773–1782PubMedCrossRefGoogle Scholar
  110. Spinoza B de (1677). The ethics. Translated by GHR Parkinson. English new edition (1993). Tuttle Publishing, North ClarendonGoogle Scholar
  111. Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance and historical significance. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  112. Strausfeld NJ, Hirth F (2013) Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340:157–161PubMedCrossRefGoogle Scholar
  113. Striedter GF (2005) Principles of brain evolution. Sinauer Associates, SunderlandGoogle Scholar
  114. Sugahara F, Pascual-Anaya J, Oisi Y, Kuraku S, Aota S, Adachi N, Takagi W, Sato N, Murakami Y, Kuratani S (2016) Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain. Nature (Lond) 10:1038Google Scholar
  115. Swanson LW (2003). Brain architecture: understanding the basic plan. 1st Edition. New York: Oxford University Press, Japanese translation 2010Google Scholar
  116. Swanson LW (2007) Quest for the basic plan of nervous system circuitry. Brain Res Rev 55:356–372PubMedCrossRefGoogle Scholar
  117. Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D (2007) Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129:1389–1400PubMedCrossRefGoogle Scholar
  118. Tomer AS, Denes K, Tessmar-Raible K, Arendt D (2010) Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142:800–809PubMedCrossRefGoogle Scholar
  119. Tononi G (2004) An information integration theory of consciousness. BMC Neurosci 5:42PubMedPubMedCentralCrossRefGoogle Scholar
  120. Tononi G (2008) Consciousness as integrated information: a provisional manifesto. Biol Bull 215:216–242PubMedCrossRefGoogle Scholar
  121. Voicu H (2008) The cerebellum: an incomplete multilayer perceptron? Neurocomputing 72:592–599CrossRefGoogle Scholar
  122. Wells MJ (1978) Octopus: physiology and behaviour of an advanced invertebrate. Chapman & Hall, LondonCrossRefGoogle Scholar
  123. Wolff GH, Strausfeld NJ (2016) Genealogical correspondence of a forebrain centre implies an executive brain in the protostome–deuterostome bilaterian ancestor. Philos Trans R Soc B 371:20150055CrossRefGoogle Scholar
  124. Wollesen T, Rodríguez Monje SV, Todt C, Degnan BM, Wanninger A (2015) Ancestral role of Pax2/5/8 in molluscan brain and multimodal sensory system development. BMC Evol Biol 15:231PubMedPubMedCentralCrossRefGoogle Scholar
  125. Young JZ (1965) The central nervous system of Nautilus. Philos Trans R Soc Lond B 249:1–25CrossRefGoogle Scholar
  126. Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Oxford University Press, OxfordGoogle Scholar
  127. Young JZ (1977) Brain, behaviour and evolution of cephalopods. Symp Zool Soc Lond 38:377–434Google Scholar
  128. Young JZ (1995) Multiple matrices in the memory system of Octopus. In: Abbott JN, Williamson R, Maddock L (eds) Cephalopod neurobiology. Oxford University Press, Oxford, pp 431–443Google Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Marine Biodiversity ResearchJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  2. 2.Department of Biology and Evolution of Marine OrganismStazione Zoologica Anton Dohrn NapoliNaplesItaly

Personalised recommendations