Organisational Principles of Connectomes: Changes During Evolution and Development

Chapter
Part of the Diversity and Commonality in Animals book series (DCA)

Abstract

The set of neural connections in an organism is now called the connectome. Using recent noninvasive techniques such as diffusion tensor imaging and traditional invasive techniques for tract tracing has uncovered a wide range of connectomes from Caenorhabditis elegans and Drosophila melanogaster to cat, mouse, rat, macaque, and human. We can therefore start to look at organisational changes during evolution. At the same time cell lineage information and measurements at different time steps allow us to observe network changes during individual, ontogenetic development. We find that the structure of a network is closely linked to its function, with distinct functional components first leading to network modules and, after the rise of further specialisation, to a hierarchical architecture with modules at different levels of network organisation. We first describe concepts that are used to characterize complex networks, then move on to briefly discuss computational models for development and evolution, before showing how network features change during the evolution and development of brain networks. We conclude with future challenges in the field of connectome development and evolution.

Keywords

Complex networks Connectome Neuronal network Network structure Topology Modelling Development Evolution 

References

  1. Achacoso TB, Yamamoto WS (1992) AY’s neuroanatomy of C. elegans for computation. CRC Press, Boca RatonGoogle Scholar
  2. Amaral LAN, Scala A, Barthélémy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci USA 97(21):11149–11152CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ball G, Aljabar P, Zebari S, Tusor N, Arichi T, Merchant N, Robinson EC, Ogundipe E, Rueckert D, Edwards AD, Counsell SJ (2014) Rich-club organization of the newborn human brain. Proc Natl Acad Sci USA 111(20):7456–7461. doi:10.1073/pnas.1324118111 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512CrossRefPubMedGoogle Scholar
  5. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28(37):9239–9248CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bauer R, Zubler F, Hauri A, Muir DR, Douglas RJ (2012) Developmental origin of patchy axonal connectivity in the neocortex: a computational model. Cereb Cortex. doi:10.1093/cercor/bhs327 PubMedPubMedCentralGoogle Scholar
  7. Bauer R, Zubler F, Pfister S, Hauri A, Pfeiffer M, Muir DR, Douglas RJ (2014) Developmental self-construction and -configuration of functional neocortical neuronal networks. PLoS Comput Biol 10(12):e1003994. doi:10.1371/journal.pcbi.1003994 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349PubMedGoogle Scholar
  9. Buzas P, Kovacs K, Ferecsko AS, Budd JM, Eysel UT, Kisvarday ZF (2006) Model-based analysis of excitatory lateral connections in the visual cortex. J Comp Neurol 499(6):861–881. doi:10.1002/cne.21134 CrossRefPubMedGoogle Scholar
  10. Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, Tomancak P, Hartenstein V (2010) An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol 8(10):e1000502CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chatterjee N, Sinha S (2008) Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. Prog Brain Res 168:145–153. doi:10.1016/S0079-6123(07)68012-1 CrossRefPubMedGoogle Scholar
  12. Collin G, van den Heuvel MP (2013) The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the life span. Neuroscientist. doi:10.1177/1073858413503712 PubMedGoogle Scholar
  13. Collin G, Sporns O, Mandl RC, van den Heuvel MP (2013) Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb Cortex. doi:10.1093/cercor/bht064 PubMedPubMedCentralGoogle Scholar
  14. Costa LF, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56(1):167–242CrossRefGoogle Scholar
  15. Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, Bullmore ET (2014) The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain Journal Neurol 137(8):2382–2395. doi:10.1093/brain/awu132
  16. da Costa Fontoura L, Kaiser M, Hilgetag CC (2007) Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Syst Biol 1:16CrossRefGoogle Scholar
  17. Daianu M, Dennis EL, Jahanshad N, Nir TM, Toga AW, Jack CR, Weiner MW, Thompson PM, Initia ADN (2013) Alzheimer’s disease disrupts rich club organization in brain connectivity networks. I S Biomed Imaging 2013:266–269Google Scholar
  18. de Reus MA, van den Heuvel MP (2013) Rich club organization and intermodule communication in the cat connectome. J Neurosci 33(32):12929–12939. doi:10.1523/JNEUROSCI.1448-13.2013 CrossRefPubMedGoogle Scholar
  19. Ebbesson SOE (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213:179–212PubMedGoogle Scholar
  20. Ebbesson SOE (1984) Evolution and ontogeny of neural circuits. Behav Brain Sci 7(3):321–331CrossRefGoogle Scholar
  21. Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMedGoogle Scholar
  22. Gauci J, Stanley KO (2010) Autonomous evolution of topographic regularities in artificial neural networks. Neural Comput 22(7):1860–1898. doi:10.1162/neco.2010.06-09-1042 CrossRefPubMedGoogle Scholar
  23. Gilbert CD, Wiesel TN (1983) Clustered intrinsic connections in cat visual cortex. J Neurosci 3(5):1116–1133PubMedGoogle Scholar
  24. Goymer P (2008) Network biology: why do we need hubs? Nat Rev Genet 9(9):650CrossRefPubMedGoogle Scholar
  25. Grayson DS, Ray S, Carpenter S, Iyer S, Dias TG, Stevens C, Nigg JT, Fair DA (2014) Structural and functional rich club organization of the brain in children and adults. PLoS One 9(2):e88297. doi:10.1371/journal.pone.0088297 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159. doi:10.1371/journal.pbio.0060159
  27. Harriger L, van den Heuvel MP, Sporns O (2012) Rich club organization of macaque cerebral cortex and its role in network communication. PLoS One 7(9):e46497. doi:10.1371/journal.pone.0046497 CrossRefPubMedPubMedCentralGoogle Scholar
  28. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419. doi:10.1093/cercor/bhl149 CrossRefPubMedGoogle Scholar
  29. Hilgetag CC, Hutt MT (2014) Hierarchical modular brain connectivity is a stretch for criticality. Trends Cogn Sci 18(3):114–115. doi:10.1016/j.tics.2013.10.016 CrossRefPubMedGoogle Scholar
  30. Hilgetag CC, Kaiser M (2004) Clustered organization of cortical connectivity. Neuroinformatics 2(3):353–360CrossRefPubMedGoogle Scholar
  31. Hilgetag CC, O’Neill MA, Young MP (2000) Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos Trans R Soc Lond Ser B 355:71–89CrossRefGoogle Scholar
  32. Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci USA 107(29):13135–13140. doi:10.1073/pnas.1001229107 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hintze A, Adami C (2008) Evolution of complex modular biological networks. PLoS Comput Biol 4(2):e23. doi:10.1371/journal.pcbi.0040023 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hwang K, Hallquist MN, Luna B (2012) The development of hub architecture in the human functional brain network. Cereb Cortex. doi:10.1093/cercor/bhs227 PubMedPubMedCentralGoogle Scholar
  35. Ito M, Masuda N, Shinomiya K, Endo K, Ito K (2013) Systematic analysis of neural projections reveals clonal composition of the Drosophila brain. Curr Biol 23(8):644–655. doi:10.1016/j.cub.2013.03.015 CrossRefPubMedGoogle Scholar
  36. Jeong H, Tombor B, Albert R, Oltwal ZN, Barabási A-L (2000) The large-scale organization of metabolic networks. Nature 407:651–654CrossRefPubMedGoogle Scholar
  37. Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42CrossRefPubMedGoogle Scholar
  38. Kaiser M (2011) A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage 57(3):892–907CrossRefPubMedGoogle Scholar
  39. Kaiser M (2015) Neuroanatomy: connectome connects fly and Mammalian brain networks. Curr Biol 25(10):R416–R418CrossRefPubMedGoogle Scholar
  40. Kaiser M, Hilgetag CC (2004a) Modelling the development of cortical networks. Neurocomputing 58–60:297–302CrossRefGoogle Scholar
  41. Kaiser M, Hilgetag CC (2004b) Spatial growth of real-world networks. Phys Rev E Stat Nonlinear Soft Matter Phys 69(3):036103Google Scholar
  42. Kaiser M, Varier S (2011) Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens. Netw Comput Neural Syst 22:143–147Google Scholar
  43. Kaiser M, Martin R, Andras P, Young MP (2007) Simulation of robustness against lesions of cortical networks. Eur J Neurosci 25(10):3185–3192. doi:10.1111/j.1460-9568.2007.05574.x
  44. Kaiser M, Hilgetag CC, Kötter R (2010) Hierarchy and dynamics of neural networks. Front Neuroinform 4:112. doi:10.3389/fninf.2010.00112 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Karbowski J (2001) Optimal wiring principle and plateaus in the degree of separation for cortical neurons. Phys Rev Lett 86(16):3674–3677. doi:10.1103/PhysRevLett.86.3674 CrossRefPubMedGoogle Scholar
  46. Kim JS, Kaiser M (2014) From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency. Philos Trans R Soc Lond B Biol Sci 369:1653. doi:10.1098/rstb.2013.0529 CrossRefGoogle Scholar
  47. Koene RA, Tijms B, van Hees P, Postma F, de Ridder A, Ramakers GJ, van Pelt J, van Ooyen A (2009) NETMORPH: a framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies. Neuroinformatics 7(3):195–210. doi:10.1007/s12021-009-9052-3 CrossRefPubMedGoogle Scholar
  48. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701CrossRefPubMedGoogle Scholar
  49. Lim S, Han CE, Uhlhaas PJ, Kaiser M (2013) Preferential detachment during human brain development: age- and sex-specific structural connectivity in diffusion tensor imaging (DTI). Cereb Cortex Adv Online. doi:10.1093/cercor/bht333 Google Scholar
  50. Louf R, Jensen P, Barthelemy M (2013) Emergence of hierarchy in cost-driven growth of spatial networks. Proc Natl Acad Sci USA. doi:10.1073/pnas.1222441110 PubMedPubMedCentralGoogle Scholar
  51. Masuda N, Aihara K (2004) Global and local synchrony of coupled neurons in small-world networks. Biol Cybern 90(4):302–309. doi:10.1007/s00422-004-0471-9 CrossRefPubMedGoogle Scholar
  52. McAuley JJ, Costa LDF, Caetano TS (2007) Rich-club phenomenon across complex network hierarchies. Appl Phys Lett 91(8). doi:10.1063/1.27723951
  53. Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200. doi:10.3389/fnins.2010.00200 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Milgram S (1967) The small-world problem. Psychol Today 1:60–67Google Scholar
  55. Mitchison G, Crick F (1982) Long axons within the striate cortex: their distribution, orientation, and patterns of connection. Proc Natl Acad Sci USA 79(11):3661–3665CrossRefPubMedPubMedCentralGoogle Scholar
  56. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256CrossRefGoogle Scholar
  57. Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582. doi:10.1073/pnas.0601602103 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nisbach F, Kaiser M (2007) Developmental time windows for spatial growth generate multiple-cluster small-world networks. Eur Phys J B 58(2):185–191CrossRefGoogle Scholar
  59. Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508(7495):207–214. doi:10.1038/nature13186 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ravasz E, Barabási A-L (2003) Hierarchical organization in complex networks. Phys Rev E 67:026112CrossRefGoogle Scholar
  61. Ray S, Miller M, Karalunas S, Robertson C, Grayson DS, Cary RP, Hawkey E, Painter JG, Kriz D, Fombonne E, Nigg JT, Fair DA (2014) Structural and functional connectivity of the human brain in autism spectrum disorders and attention-deficit/hyperactivity disorder: a rich club-organization study. Hum Brain Mapp 35(12):6032–6048. doi:10.1002/hbm.22603 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rockland KS, Lund JS (1982) Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 215(4539):1532–1534CrossRefPubMedGoogle Scholar
  63. Rockland KS, Lund JS (1983) Intrinsic laminar lattice connections in primate visual cortex. J Comp Neurol 216(3):303–318. doi:10.1002/cne.902160307 CrossRefPubMedGoogle Scholar
  64. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069. doi:S1053-8119(09)01074-X [pii] 10.1016/j.neuroimage.2009.10.003Google Scholar
  65. Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. J Neurosci 15(2):1463–1483PubMedGoogle Scholar
  66. Semendeferi K, Teffer K, Buxhoeveden DP, Park MS, Bludau S, Amunts K, Travis K, Buckwalter J (2011) Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex 21(7):1485–1497. doi:10.1093/cercor/bhq191 CrossRefPubMedGoogle Scholar
  67. Senden M, Deco G, de Reus MA, Goebel R, van den Heuvel MP (2014) Rich club organization supports a diverse set of functional network configurations. NeuroImage 96:174–182. doi:10.1016/j.neuroimage.2014.03.066 CrossRefPubMedGoogle Scholar
  68. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28(14):3586–3594CrossRefPubMedGoogle Scholar
  69. Sherwood CC, Subiaul F, Zawidzki TW (2008) A natural history of the human mind: tracing evolutionary changes in brain and cognition. J Anat 212(4):426–454. doi:10.1111/j.1469-7580.2008.00868.x CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sporns O (2013) The human connectome: origins and challenges. Neuroimage. doi:10.1016/j.neuroimage.2013.03.023 Google Scholar
  71. Sporns O, Bullmore ET (2014) From connections to function: the mouse brain connectome atlas. Cell 157(4):773–775. doi:10.1016/j.cell.2014.04.023 CrossRefPubMedGoogle Scholar
  72. Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2(2):145–162. doi:10.1385/NI:2:2:145
  73. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8(9):418–425CrossRefPubMedGoogle Scholar
  74. Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42. doi:10.1371/journal.pcbi.0010042 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Stam CJ (2014) Modern network science of neurological disorders. Nat Rev Neurosci 15(10):683–695. doi:10.1038/nrn3801 CrossRefPubMedGoogle Scholar
  76. Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99–127. doi:10.1162/106365602320169811 CrossRefPubMedGoogle Scholar
  77. Torben-Nielsen B, De Schutter E (2014) Context-aware modeling of neuronal morphologies. Front Neuroanat 8:92. doi:10.3389/fnana.2014.00092 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Towlson EK, Vertes PE, Ahnert SE, Schafer WR, Bullmore ET (2013) The rich club of the C. elegans neuronal connectome. J Neurosci 33(15):6380–6387. doi:10.1523/JNEUROSCI.3784-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  79. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786. doi:10.1523/jneurosci.3539-11.2011 CrossRefPubMedGoogle Scholar
  80. van den Heuvel MP, Kahn RS, Goni J, Sporns O (2012) High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci USA 109(28):11372–11377. doi:10.1073/pnas.1203593109 CrossRefPubMedPubMedCentralGoogle Scholar
  81. van den Heuvel MP, Kersbergen KJ, de Reus MA, Keunen K, Kahn RS, Groenendaal F, de Vries LS, Benders MJ (2014) The neonatal connectome during preterm brain development. Cereb Cortex. doi:10.1093/cercor/bhu095 PubMedCentralGoogle Scholar
  82. Van Hooser SD, Heimel JA, Chung S, Nelson SB (2006) Lack of patchy horizontal connectivity in primary visual cortex of a mammal without orientation maps. J Neurosci 26(29):7680–7692. doi:10.1523/JNEUROSCI.0108-06.2006 CrossRefPubMedGoogle Scholar
  83. Varier S, Kaiser M (2011) Neural development features: spatio-temporal development of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7:e1001044. doi:10.1371/journal.pcbi.1001044 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Verbancsics P, Stanley KO (2011) Constraining connectivity to encourage modularity in hyperNEAT. Gecco-2011: proceedings of the 13th annual genetic and evolutionary computation conference, pp 1483–1490Google Scholar
  85. Warren DE, Power JD, Bruss J, Denburg NL, Waldron EJ, Sun H, Petersen SE, Tranel D (2014) Network measures predict neuropsychological outcome after brain injury. Proc Natl Acad Sci USA 111(39):14247–14252. doi:10.1073/pnas.1322173111 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRefPubMedGoogle Scholar
  87. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1–340CrossRefPubMedGoogle Scholar
  88. Young MP (1992) Objective analysis of the topological organization of the primate cortical visual system. Nature 358(6382):152–155CrossRefPubMedGoogle Scholar
  89. Zamora-Lopez G, Zhou C, Kurths J (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinform 4:1. doi:10.3389/neuro.11.001.2010 PubMedPubMedCentralGoogle Scholar
  90. Zubler F, Douglas R (2009) A framework for modeling the growth and development of neurons and networks. Front Comput Neurosci 3:25. doi:10.3389/neuro.10.025.2009 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing ScienceNewcastle UniversityNewcastle upon TyneUK
  2. 2.Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations