Advertisement

Carbohydrate Structure Database (CSDB): Examples of Usage

  • Ksenia S. Egorova
  • Philip V. Toukach
Chapter

Abstract

The main goals of glycoscience are elucidation of carbohydrate features responsible for cellular processes, pathogenicity of microorganisms, and immunological properties of higher organisms, as well as application of glycans as diagnostic and therapeutic agents and classification of natural glycans and glycoconjugates. These goals are hardly achievable without freely available, regularly updated, and cross-linked databases, which provide data accumulated in glycoscience and allow tracking of their quality.

The Carbohydrate Structure Database is a curated data repository developed for provision of structural, bibliographic, taxonomic, NMR spectroscopic, and other related information on published carbohydrates and derivatives. Currently it covers ca. 90 % of published primary structures of bacterial and archaeal origin and ca. 30 % of published primary structures of plant and fungal origin. The data in bacterial part of CSDB are regularly updated. The expansion of plant and fungal coverage is expected in the future. The project aims at coverage close to complete in selected taxonomic domains and at high data quality achieved by manual literature analysis, annotation, verification, and data approval. CSDB is freely available on the Internet as a web service at http://csdb.glycoscience.ru.

This chapter presents a step-by-step guide to use CSDB for solving everyday tasks typical for carbohydrate research.

Keywords

CSDB Carbohydrate Structure Database Bacterial Plant Fungal Tutorial Model problems User manual Search Statistics NMR simulation 

References

  1. Acland A, Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bryant SH, Canese K, Church DM, Clark K, DiCuccio M, Dondoshansky I, Federhen S, Feolo M, Geer LY, Gorelenkov V, Hoeppner M, Johnson M, Kelly C, Khotomlianski V, Kimchi A, Kimelman M, Kitts P, Krasnov S, Kuznetsov A, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Karsch-Mizrachi I, Murphy T, Ostell J, O’Sullivan C, Panchenko A, Phan L, Pruitt DP, Rubinstein W, Sayers EW, Schneider V, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Siyan K, Slotta D, Soboleva A, Soussov V, Starchenko G, Tatusova TA, Trawick BW, Vakatov D, Wang Y, Ward M, John Wilbur W, Yaschenko E, Zbicz K (2014) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 42:D7–D17CrossRefGoogle Scholar
  2. Aoki-Kinoshita KF, Bolleman J, Campbell MP, Kawano S, Kim JD, Lütteke T, Matsubara M, Okuda S, Ranzinger R, Sawaki H, Shikanai T, Shinmachi D, Suzuki Y, Toukach P, Yamada I, Packer NH, Narimatsu H (2013) Introducing glycomics data into the Semantic Web. J Biomed Semant 4:39CrossRefGoogle Scholar
  3. Damerell D, Ceroni A, Maass K, Ranzinger R, Dell A, Haslam SM (2012) The GlycanBuilder and GlycoWorkbench glycoinformatics tools: updates and new developments. Biol Chem 393:1357–1362CrossRefPubMedGoogle Scholar
  4. Doubet S, Bock K, Smith D, Darvill A, Albersheim P (1989) The complex carbohydrate structure database. Trends Biochem Sci 14:475–477CrossRefPubMedGoogle Scholar
  5. Egorova KS, Toukach PhV (2014) Expansion of coverage of Carbohydrate Structure Database (CSDB). Carbohydr Res 389:112–114CrossRefPubMedGoogle Scholar
  6. Egorova KS, Kondakova AN, Toukach PhV (2015) Carbohydrate structure database: tools for statistical analysis of bacterial, plant and fungal glycomes. Database, (article ID bav073):1–22. doi:  10.1093/database/bav073
  7. Herget S, Ranzinger R, Maass K, von der Lieth CW (2008) GlycoCT—a unifying sequence format for carbohydrates. Carbohydr Res 343:2162–2171CrossRefPubMedGoogle Scholar
  8. Kapaev RR, Toukach PhV (2015) Improved carbohydrate structure generalization scheme for 1H and 13C NMR simulations. Anal Chem 87(14):7006–7010CrossRefPubMedGoogle Scholar
  9. Kapaev RR, Egorova KS, Toukach PhV (2014) Carbohydrate structure generalization scheme for database-driven simulation of experimental observables, such as NMR chemical shifts. J Chem Inf Model 54:2594–2611CrossRefPubMedGoogle Scholar
  10. Kapaev RR, Toukach PhV (2016) Simulation of 2D NMR Spectra of Carbohydrates Using GODESS Software. J Chem Inf Model 56:1100–1104Google Scholar
  11. Lipkind GM, Shashkov AS, Knirel YA, Vinogradov EV, Kochetkov NK (1988) A computer-assisted structural analysis of regular polysaccharides on the basis of 13C-n.m.r. data. Carbohydr Res 175:59–75CrossRefPubMedGoogle Scholar
  12. Loss A, Bunsmann P, Bohne A, Loss A, Schwarzer E, Lang E, von der Lieth CW (2002) SWEET-DB: an attempt to create annotated data collections for carbohydrates. Nucleic Acids Res 30:405–408CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lütteke T (2012) The use of glycoinformatics in glycochemistry. Beilstein J Org Chem 8:915–929CrossRefPubMedPubMedCentralGoogle Scholar
  14. Royle L, Dwek A, Rudd M (2006) Determining the structure of oligosaccharides N- and O-linked to glycoproteins. In: Current protocols in protein science. Wiley, Newyork, pp 12.6.1–12.6.45CrossRefGoogle Scholar
  15. Sharon N (1988) Nomenclature of glycoproteins, glycopeptides and peptidoglycans. Pure Appl Chem 60:1389–1394CrossRefGoogle Scholar
  16. Toukach PhV (2011) Bacterial carbohydrate structure database 3: principles and realization. J Chem Inf Model 51:159–170CrossRefPubMedGoogle Scholar
  17. Toukach FV, Ananikov VP (2013) Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations. Chem Soc Rev 42:8376–8415CrossRefPubMedGoogle Scholar
  18. Toukach PhV, Egorova KS (2015) Bacterial, plant, and fungal carbohydrate structure databases: daily usage. In: Lütteke T, Frank M (eds) Glycoinformatics, vol 1273, Methods in molecular biology. Springer, New York, pp 55–85, ch.5Google Scholar
  19. Toukach PhV, Egorova KS (2016) Carbohydrate Structure Database merged from bacterial, archaeal, plant and fungal parts. Nucleic Acids Res 44(D1):D1229–D1236CrossRefPubMedGoogle Scholar
  20. Toukach FV, Shashkov AS (2001) Computer-assisted structural analysis of regular glycopolymers on the basis of 13C NMR data. Carbohydr Res 335:101–114CrossRefPubMedGoogle Scholar
  21. Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, Stanley P, Hart G, Darvill A, Kinoshita T, Prestegard JJ, Schnaar RL, Freeze HH, Marth JD, Bertozzi CR, Etzler ME, Frank M, Vliegenthart JF, Lütteke T, Perez S, Bolton E, Rudd P, Paulson J, Kanehisa M, Toukach P, Aoki-Kinoshita KF, Dell A, Narimatsu H, York W, Taniguchi N, Kornfeld S (2015) Symbol nomenclature for graphical representations of glycans. Glycobiology 25(12):1323–1324CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  1. 1.N.D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations