D-Amino Acids pp 293-309 | Cite as

d-Amino Acid Oxidase and d-Aspartate Oxidase

  • Yusuke Kato
  • Diem Hong Tran
  • Huong Thi Thanh Trinh
  • Kiyoshi FukuiEmail author


d-Amino acids are the enantiomers of l-amino acids used as building blocks of proteins and were previously unknown as to pathophysiological roles. However, increasing numbers of recent studies have suggested importance of d-amino acids. d-Serine (d-Ser) works as a co-agonist of the NMDA receptor, an ion channel for neurotransmission. A decrease in the amount of d-Ser in brain has been observed in patients of schizophrenia. It has been suggested that d-aspartate (d-Asp) is related with the regulation of motor neurons, memory, and mental disorders. Cognate flavoenzymes such as d-amino acid oxidase (DAO) and d-aspartate oxidase (DDO) regulate the amount of d-Ser and d-Asp in our body, respectively, to modulate such biological events. We therefore have proposed that the “d-amino acid biosystems” play important roles in our bodies. Chemicals that modulate the enzymatic activity of DAO and DDO are expected as potent therapeutic drugs for schizophrenia and other mental disorders.


d-Amino acid oxidase Glutamatergic neurotransmission Schizophrenia Glial cells Choroid plexus d-Aspartate oxidase Pituitary gland 


  1. Abou El-Magd RM, Park HK, Kawazoe T et al (2010) The effect of risperidone on d-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia. J Psychopharmacol 24:1055–1067CrossRefPubMedGoogle Scholar
  2. Amery L, Brees C, Baes M et al (1998) C-terminal tripeptide Ser-Asn-Leu (SNL) of human d-aspartate oxidase is a functional peroxisome-targeting signal. Biochem J 336(Pt 2):367–371CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beard ME (1990) d-aspartate oxidation by rat and bovine renal peroxisomes: an electron microscopic cytochemical study. J Histochem Cytochem 38:1377–1381CrossRefPubMedGoogle Scholar
  4. Braff DL, Grillon C, Geyer MA (1992) Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49:206–215CrossRefPubMedGoogle Scholar
  5. D’Aniello A, Rocca E (1972) d-Aspartate oxidase from the hepatopancreas of Octopus vulgaris Lam. Comp Biochem Physiol B 41:625–633PubMedGoogle Scholar
  6. D’Aniello A, Di Cosmo A, Di Cristo C et al (1996) Involvement of d-aspartic acid in the synthesis of testosterone in rat testes. Life Sci 59:97–104CrossRefPubMedGoogle Scholar
  7. D’Aniello A, Di Fiore MM, Fisher GH et al (2000) Occurrence of d-aspartic acid and N-methyl-d-aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone release. Faseb J 14:699–714PubMedGoogle Scholar
  8. Dunlop DS, Neidle A, McHale D et al (1986) The presence of free d-aspartic acid in rodents and man. Biochem Biophys Res Commun 141:27–32CrossRefPubMedGoogle Scholar
  9. Errico F, Pirro MT, Affuso A et al (2006) A physiological mechanism to regulate d-aspartic acid and NMDA levels in mammals revealed by d-aspartate oxidase deficient mice. Gene 374:50–57CrossRefPubMedGoogle Scholar
  10. Errico F, Rossi S, Napolitano F et al (2008a) d-aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci 28:10404–10414CrossRefPubMedGoogle Scholar
  11. Errico F, Nistico R, Palma G et al (2008b) Increased levels of d-aspartate in the hippocampus enhance LTP but do not facilitate cognitive flexibility. Mol Cell Neurosci 37:236–246CrossRefPubMedGoogle Scholar
  12. Errico F, Nistico R, Napolitano F et al (2011) Persistent increase of d-aspartate in d-aspartate oxidase mutant mice induces a precocious hippocampal age-dependent synaptic plasticity and spatial memory decay. Neurobiol Aging 32:2061–2074CrossRefPubMedGoogle Scholar
  13. Errico F, Napolitano F, Squillace M et al (2013) Decreased levels of d-aspartate and NMDA in the prefrontal cortex and striatum of patients with schizophrenia. J Psychiatr Res 47:1432–1437CrossRefPubMedGoogle Scholar
  14. Fagg GE, Matus A (1984) Selective association of N-methyl aspartate and quisqualate types of l-glutamate receptor with brain postsynaptic densities. Proc Natl Acad Sci U S A 81:6876–6880CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fang J, Deng D, Nakamura H et al (2008) Oxystress inducing antitumor therapeutics via tumor-targeted delivery of PEG-conjugated d-amino acid oxidase. Int J Cancer 122:1135–1144CrossRefPubMedGoogle Scholar
  16. Fukui K (2012) Disease-targeted enzymology on the function and structure of d-amino acid metabolic system. Article in Japanese Vitamin 86:63–73Google Scholar
  17. Fukui K, Watanabe F, Shibata T et al (1987) Molecular cloning and sequence analysis of cDNAs encoding porcine kidney d-amino acid oxidase. Biochemistry 26:3612–3618CrossRefPubMedGoogle Scholar
  18. Fukui K, Momoi K, Watanabe F et al (1988) In vivo and in vitro expression of porcine d-amino acid oxidase: in vitro system for the synthesis of a functional enzyme. Biochemistry 27:6693–6697CrossRefPubMedGoogle Scholar
  19. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30(Suppl 1):S162–173CrossRefPubMedGoogle Scholar
  20. Hashimoto A, Nishikawa T, Oka T et al (1993) Endogenous d-serine in rat brain: N-methyl-d-aspartate receptor-related distribution and aging. J Neurochem 60:783–786CrossRefPubMedGoogle Scholar
  21. Huang AS, Beigneux A, Weil ZM et al (2006) d-aspartate regulates melanocortin formation and function: behavioral alterations in d-aspartate oxidase-deficient mice. J Neurosci 26:2814–2819CrossRefPubMedGoogle Scholar
  22. Ishio S, Yamada H, Hayashi M et al (1998) d-aspartate modulates melatonin synthesis in rat pinealocytes. Neurosci Lett 249:143–146CrossRefPubMedGoogle Scholar
  23. Iwana S, Kawazoe T, Park HK et al (2008) Chlorpromazine oligomer is a potentially active substance that inhibits human d-amino acid oxidase, product of a susceptibility gene for schizophrenia. J Enzyme Inhib Med Chem 23:901–911CrossRefPubMedGoogle Scholar
  24. Katane M, Homma H (2010) d-aspartate oxidase: the sole catabolic enzyme acting on free d-aspartate in mammals. Chem Biodivers 7:1435–1449CrossRefPubMedGoogle Scholar
  25. Katane M, Furuchi T, Sekine M et al (2007) Molecular cloning of a cDNA encoding mouse d-aspartate oxidase and functional characterization of its recombinant proteins by site-directed mutagenesis. Amino Acids 32:69–78CrossRefPubMedGoogle Scholar
  26. Kawazoe T, Tsuge H, Pilone MS et al (2006) Crystal structure of human d-amino acid oxidase: context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si-face of the flavin ring. Protein Sci 15:2708–2717CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kawazoe T, Park HK, Iwana S et al (2007) Human d-amino acid oxidase: an update and review. Chem Rec 7:305–315CrossRefPubMedGoogle Scholar
  28. Kim PM, Duan X, Huang AS et al (2010) Aspartate racemase, generating neuronal d-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci U S A 107:3175–3179CrossRefPubMedPubMedCentralGoogle Scholar
  29. Krebs HA (1935) Metabolism of amino-acids: deamination of amino-acids. Biochem J 29:1620–1644CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lee JA, Homma H, Tashiro K et al (1999) d-aspartate localization in the rat pituitary gland and retina. Brain Res 838:193–199CrossRefPubMedGoogle Scholar
  31. Matsui T, Sekiguchi M, Hashimoto A et al (1995) Functional comparison of d-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem 65:454–458CrossRefPubMedGoogle Scholar
  32. Mohn AR, Gainetdinov RR, Caron MG et al (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–436CrossRefPubMedGoogle Scholar
  33. Molla G, Sacchi S, Bernasconi M et al (2006) Characterization of human d-amino acid oxidase. FEBS Lett 580:2358–2364CrossRefPubMedGoogle Scholar
  34. Momoi K, Fukui K, Watanabe F et al (1988) Molecular cloning and sequence analysis of cDNA encoding human kidney d-amino acid oxidase. FEBS Lett 238:180–184CrossRefPubMedGoogle Scholar
  35. Momoi K, Fukui K, Tada M et al (1990) Gene expression of d-amino acid oxidase in rabbit kidney. J Biochem 108:406–413PubMedGoogle Scholar
  36. Mothet JP, Parent AT, Wolosker H et al (2000) d-serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci U S A 97:4926–4931CrossRefPubMedPubMedCentralGoogle Scholar
  37. Negri A, Massey V, Williams CH Jr (1987) d-aspartate oxidase from beef kidney. Purification and properties. J Biol Chem 262:10026–10034PubMedGoogle Scholar
  38. Ono K, Shishido Y, Park HK et al (2009) Potential pathophysiological role of d-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. J Neural Transm 116:1335–1347CrossRefPubMedGoogle Scholar
  39. Park HK, Shishido Y, Ichise-Shishido S et al (2006) Potential role for astroglial d-amino acid oxidase in extracellular d-serine metabolism and cytotoxicity. J Biochem 139:295–304CrossRefPubMedGoogle Scholar
  40. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMedGoogle Scholar
  41. Raibekas AA, Fukui K, Massey V (2000) Design and properties of human d-amino acid oxidase with covalently attached flavin. Proc Natl Acad Sci U S A 97:3089–3093CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sacchi S, Lorenzi S, Molla G et al (2002) Engineering the substrate specificity of D-amino-acid oxidase. J Biol Chem 277:27510–27516CrossRefPubMedGoogle Scholar
  43. Schell MJ, Molliver ME, Snyder SH (1995) d-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92:3948–3952CrossRefPubMedPubMedCentralGoogle Scholar
  44. Schell MJ, Cooper OB, Snyder SH (1997) d-aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci U S A 94:2013–2018CrossRefPubMedPubMedCentralGoogle Scholar
  45. Setoyama C, Miura R (1997) Structural and functional characterization of the human brain d-aspartate oxidase. J Biochem 121:798–803CrossRefPubMedGoogle Scholar
  46. Simonic T, Duga S, Negri A et al (1997) cDNA cloning and expression of the flavoprotein d-aspartate oxidase from bovine kidney cortex. Biochem J 322(Pt 3):729–735CrossRefPubMedPubMedCentralGoogle Scholar
  47. Still JL, Buell MV, Knox WE (1949) Studies on the cyclophorase system: VII. d-aspartic oxidase. J Biol Chem 179:831–837PubMedGoogle Scholar
  48. Tada M, Fukui K, Momoi K et al (1990) Cloning and expression of a cDNA encoding mouse kidney d-amino acid oxidase. Gene 90:293–297CrossRefPubMedGoogle Scholar
  49. Tran DH, Shishido Y, Chung SP et al (2015) Identification of two promoters for human d-amino acid oxidase gene: implication for the differential promoter regulation mediated by PAX5/PAX2. J Biochem 157:377–387CrossRefPubMedGoogle Scholar
  50. Tsai G, Yang P, Chung LC et al (1998) d-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44:1081–1089CrossRefPubMedGoogle Scholar
  51. Van Veldhoven PP, Brees C, Mannaerts GP (1991) d-aspartate oxidase, a peroxisomal enzyme in liver of rat and man. Biochim Biophys Acta 1073:203–208CrossRefPubMedGoogle Scholar
  52. Weil ZM, Huang AS, Beigneux A et al (2006) Behavioural alterations in male mice lacking the gene for d-aspartate oxidase. Behav Brain Res 171:295–302CrossRefPubMedGoogle Scholar
  53. Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci U S A 96:13409–13414CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yagi K, Nagatsu T, Ozawa T (1956) Inhibitory action of chlorpromazine on the oxidation of D-amino-acid in the diencephalon part of the brain. Nature 177:891–892CrossRefPubMedGoogle Scholar
  55. Yagi K, Ozawa T, Nagatsu T (1960) Mechanism of inhibition of d-amino acid oxidase. IV. Inhibitory action of chlorpromazine. Biochim Biophys Acta 43:310–317CrossRefPubMedGoogle Scholar
  56. Yamamoto A, Tanaka H, Ishida T et al (2007) Functional and structural characterization of d-aspartate oxidase from porcine kidney: non-Michaelis kinetics due to substrate activation. J Biochem 141:363–376CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yusuke Kato
    • 1
  • Diem Hong Tran
    • 1
  • Huong Thi Thanh Trinh
    • 1
  • Kiyoshi Fukui
    • 1
    Email author
  1. 1.Division of Enzyme Pathophysiology, The Institute for Enzyme Research (KOSOKEN)Tokushima UniversityTokushimaJapan

Personalised recommendations