Advertisement

D-Amino Acids pp 219-237 | Cite as

Neuromodulatory Activity of d-Aspartate in Mammals

  • Francesco ErricoEmail author
  • Alessandro Usiello
Chapter

Abstract

d-aspartate is transiently present in the mammalian brain since it substantially occurs in embryonic phases and strongly decreases after birth, due to the postnatal activity of the catabolizing enzyme d-aspartate oxidase (DDO). Pharmacological evidence indicates that d-aspartate binds to and activates NMDA receptors (NMDARs). To decipher the function of d-aspartate in mammals, genetic and pharmacological mouse models with nonphysiological high levels of this d-amino acid have been generated. Their characterization has evidenced that increased d-aspartate enhances hippocampal NMDAR-dependent synaptic plasticity, dendritic morphology, and spatial memory. In line with the hypothesis of a NMDAR hypofunction in the pathogenesis of schizophrenia, it has been also shown that increased d-aspartate produces corticostriatal adaptations resembling those observed after chronic haloperidol treatment, and protects against prepulse inhibition deficits induced by psychotomimetic drugs. Moreover, a study in healthy humans has demonstrated that genetic variation in DDO gene, predicting potential increase in d-aspartate levels in postmortem prefrontal cortex, is associated with greater prefrontal gray matter and activity during working memory. Interestingly, a significant reduction of d-aspartate content has been detected in the postmortem brain of patients with schizophrenia. In line with a dichotomous effect of NMDAR stimulation on brain physiology, constitutive elevation of d-aspartate levels is also associated with detrimental effects, including precocious hippocampal age-related deterioration. Based on the agonistic role of d-aspartate on NMDARs and on its abundance during prenatal life, future studies will be crucial to address the effect of this molecule on developmental processes controlled by NMDARs.

Keywords

d-aspartate d-aspartate oxidase NMDA receptor Mouse models 

References

  1. Adachi M, Koyama H, Long Z, Sekine M, Furuchi T, Imai K, Nimura N, Shimamoto K, Nakajima T, Homma H (2004) l-Glutamate in the extracellular space regulates endogenous d-aspartate homeostasis in rat pheochromocytoma MPT1 cells. Arch Biochem Biophys 424(1):89–96. doi: 10.1016/j.abb.2004.01.016 S0003986104000529 [pii]PubMedCrossRefGoogle Scholar
  2. Amery L, Brees C, Baes M, Setoyama C, Miura R, Mannaerts GP, Van Veldhoven PP (1998) C-terminal tripeptide Ser-Asn-Leu (SNL) of human d-aspartate oxidase is a functional peroxisome-targeting signal. Biochem J 336(Pt 2):367–371PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson CM, Bridges RJ, Chamberlin AR, Shimamoto K, Yasuda-Kamatani Y, Swanson RA (2001) Differing effects of substrate and non-substrate transport inhibitors on glutamate uptake reversal. J Neurochem 79(6):1207–1216PubMedCrossRefGoogle Scholar
  4. Bak LK, Schousboe A, Waagepetersen HS (2003) Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using dl-threo-beta-benzyloxyaspartate (dl-TBOA) to distinguish between the vesicular and cytoplasmic pools. Neurochem Int 43(4–5):417–424, doi:S0197018603000305 [pii]PubMedCrossRefGoogle Scholar
  5. Basu AC, Tsai GE, Ma CL, Ehmsen JT, Mustafa AK, Han L, Jiang ZI, Benneyworth MA, Froimowitz MP, Lange N, Snyder SH, Bergeron R, Coyle JT (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14(7):719–727. doi: 10.1038/mp.2008.130 PubMedCrossRefGoogle Scholar
  6. Beard ME (1990) d-aspartate oxidation by rat and bovine renal peroxisomes: an electron microscopic cytochemical study. J Histochem Cytochem 38(9):1377–1381PubMedCrossRefGoogle Scholar
  7. Billard JM (2012) d-Amino acids in brain neurotransmission and synaptic plasticity. Amino Acids 43(5):1851–1860. doi: 10.1007/s00726-012-1346-3 PubMedCrossRefGoogle Scholar
  8. Boccella S, Vacca V, Errico F, Marinelli S, Squillace M, Guida F, Di Maio A, Vitucci D, Palazzo E, De Novellis V, Maione S, Pavone F, Usiello A (2015) d-aspartate modulates nociceptive-specific neuron activity and pain threshold in inflammatory and neuropathic pain condition in mice. BioMed Res Int 2015:905906. doi: 10.1155/2015/905906 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Centonze D, Usiello A, Costa C, Picconi B, Erbs E, Bernardi G, Borrelli E, Calabresi P (2004) Chronic haloperidol promotes corticostriatal long-term potentiation by targeting dopamine D2L receptors. J Neurosci 24(38):8214–8222. doi: 10.1523/JNEUROSCI.1274-04.2004 24/38/8214 [pii]
  10. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, Colantuoni EA, Elkahloun AG, Herman MM, Weinberger DR, Kleinman JE (2011) Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478(7370):519–523. doi: 10.1038/nature10524 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Corrigan JJ (1969) d-amino acids in animals. Science 164(876):142–149PubMedCrossRefGoogle Scholar
  12. Coyle JT (2012) NMDA receptor and schizophrenia: a brief history. Schizophr Bull 38(5):920–926. doi:sbs076 [pii]  10.1093/schbul/sbs076
  13. Coyle JT, Tsai G (2004a) NMDA receptor function, neuroplasticity, and the pathophysiology of schizophrenia. Int Rev Neurobiol 59:491–515. doi: 10.1016/S0074-7742(04)59019-0 S0074774204590190 [pii]PubMedCrossRefGoogle Scholar
  14. Coyle JT, Tsai G (2004b) The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology (Berl) 174(1):32–38. doi: 10.1007/s00213-003-1709-2 CrossRefGoogle Scholar
  15. D’Aniello A, Giuditta A (1977) Identification of d-aspartic acid in the brain of Octopus vulgaris Lam. J Neurochem 29(6):1053–1057PubMedCrossRefGoogle Scholar
  16. D’Aniello A, Vetere A, Petrucelli L (1993) Further study on the specificity of d-amino acid oxidase and d-aspartate oxidase and time course for complete oxidation of d-amino acids. Comp Biochem Physiol 105(3–4):731–734Google Scholar
  17. D’Aniello S, Somorjai I, Garcia-Fernandez J, Topo E, D’Aniello A (2010) d-Aspartic acid is a novel endogenous neurotransmitter. FASEB J 25(3):1014–1027. doi:fj.10-168492 [pii]  10.1096/fj.10-168492
  18. Davies LP, Johnston GA (1976) Uptake and release of d- and l-aspartate by rat brain slices. J Neurochem 26(5):1007–1014PubMedCrossRefGoogle Scholar
  19. DeVito LM, Balu DT, Kanter BR, Lykken C, Basu AC, Coyle JT, Eichenbaum H (2011) Serine racemase deletion disrupts memory for order and alters cortical dendritic morphology. Genes Brain Behav 10(2):210–222. doi: 10.1111/j.1601-183X.2010.00656.x PubMedCrossRefGoogle Scholar
  20. Dunlop DS, Neidle A, McHale D, Dunlop DM, Lajtha A (1986) The presence of free d-aspartic acid in rodents and man. Biochem Biophys Res Commun 141(1):27–32PubMedCrossRefGoogle Scholar
  21. Errico F, Pirro MT, Affuso A, Spinelli P, De Felice M, D’Aniello A, Di Lauro R (2006) A physiological mechanism to regulate d-aspartic acid and NMDA levels in mammals revealed by d-aspartate oxidase deficient mice. Gene 374:50–57PubMedCrossRefGoogle Scholar
  22. Errico F, Nistico R, Palma G, Federici M, Affuso A, Brilli E, Topo E, Centonze D, Bernardi G, Bozzi Y, D’Aniello A, Di Lauro R, Mercuri NB, Usiello A (2008a) Increased levels of d-aspartate in the hippocampus enhance LTP but do not facilitate cognitive flexibility. Mol Cell Neurosci 37(2):236–246. doi:S1044-7431(07)00223-0 [pii]  10.1016/j.mcn.2007.09.012
  23. Errico F, Rossi S, Napolitano F, Catuogno V, Topo E, Fisone G, D’Aniello A, Centonze D, Usiello A (2008b) d-aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci 28(41):10404–10414. doi:28/41/10404 [pii]  10.1523/JNEUROSCI.1618-08.2008
  24. Errico F, Bonito-Oliva A, Bagetta V, Vitucci D, Romano R, Zianni E, Napolitano F, Marinucci S, Di Luca M, Calabresi P, Fisone G, Carta M, Picconi B, Gardoni F, Usiello A (2011a) Higher free d-aspartate and N-methyl-d-aspartate levels prevent striatal depotentiation and anticipate l-DOPA-induced dyskinesia. Exp Neurol 232(2):240–250. doi:S0014-4886(11)00321-9 [pii]  10.1016/j.expneurol.2011.09.013
  25. Errico F, Nistico R, Napolitano F, Mazzola C, Astone D, Pisapia T, Giustizieri M, D'Aniello A, Mercuri NB, Usiello A (2011b) Increased d-aspartate brain content rescues hippocampal age-related synaptic plasticity deterioration of mice. Neurobiol Aging 32(12):2229–2243. doi: 10.1016/j.neurobiolaging.2010.01.002
  26. Errico F, Nistico R, Napolitano F, Oliva AB, Romano R, Barbieri F, Florio T, Russo C, Mercuri NB, Usiello A (2011c) Persistent increase of d-aspartate in d-aspartate oxidase mutant mice induces a precocious hippocampal age-dependent synaptic plasticity and spatial memory decay. Neurobiol Aging 32(11):2061–2074. doi:S0197-4580(09)00399-6 [pii]  10.1016/j.neurobiolaging.2009.12.007
  27. Errico F, Napolitano F, Squillace M, Vitucci D, Blasi G, de Bartolomeis A, Bertolino A, D’Aniello A, Usiello A (2013) Decreased levels of d-aspartate and NMDA in the prefrontal cortex and striatum of patients with schizophrenia. J Psychiatr Res doi:S0022-3956(13)00196-9 [pii]  10.1016/j.jpsychires.2013.06.013
  28. Errico F, Nistico R, Di Giorgio A, Squillace M, Vitucci D, Galbusera A, Piccinin S, Mango D, Fazio L, Middei S, Trizio S, Mercuri NB, Teule MA, Centonze D, Gozzi A, Blasi G, Bertolino A, Usiello A (2014) Free d-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals. Transl Psychiatry 4, e417. doi: 10.1038/tp.2014.59 tp201459 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fagg GE, Matus A (1984) Selective association of N-methyl aspartate and quisqualate types of l-glutamate receptor with brain postsynaptic densities. Proc Natl Acad Sci U S A 81(21):6876–6880PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fatemi SH, Folsom TD (2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull 35(3):528–548. doi: 10.1093/schbul/sbn187 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fossat P, Turpin FR, Sacchi S, Dulong J, Shi T, Rivet JM, Sweedler JV, Pollegioni L, Millan MJ, Oliet SH, Mothet JP (2012) Glial d-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb Cortex 22(3):595–606. doi: 10.1093/cercor/bhr130 PubMedCrossRefGoogle Scholar
  32. Garthwaite G, Garthwaite J (1985) Sites of d-[3H]aspartate accumulation in mouse cerebellar slices. Brain Res 343(1):129–136PubMedCrossRefGoogle Scholar
  33. Geyer MA (2006) The family of sensorimotor gating disorders: comorbidities or diagnostic overlaps? Neurotox Res 10(3–4):211–220PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gong XQ, Frandsen A, Lu WY, Wan Y, Zabek RL, Pickering DS, Bai D (2005) d-aspartate and NMDA, but not l-aspartate, block AMPA receptors in rat hippocampal neurons. Br J Pharmacol 145(4):449–459PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160(4):636–645PubMedCrossRefGoogle Scholar
  36. Grasselli G, Rossi S, Musella A, Gentile A, Loizzo S, Muzio L, Di Sanza C, Errico F, Musumeci G, Haji N, Fresegna D, Sepman H, De Chiara V, Furlan R, Martino G, Usiello A, Mandolesi G, Centonze D (2013) Abnormal NMDA receptor function exacerbates experimental autoimmune encephalomyelitis. Br J Pharmacol 168:502–517. doi: 10.1111/j.1476-5381.2012.02178.x PubMedCrossRefGoogle Scholar
  37. Gundersen V, Danbolt NC, Ottersen OP, Storm-Mathisen J (1993) Demonstration of glutamate/aspartate uptake activity in nerve endings by use of antibodies recognizing exogenous d-aspartate. Neuroscience 57(1):97–111, doi:0306-4522(93)90114-U [pii]PubMedCrossRefGoogle Scholar
  38. Hamase K, Homma H, Takigawa Y, Fukushima T, Santa T, Imai K (1997) Regional distribution and postnatal changes of d-amino acids in rat brain. Biochim Biophys Acta 1334(2–3):214–222, doi:S0304-4165(96)00095-5 [pii]PubMedCrossRefGoogle Scholar
  39. Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26(2):81–89. doi: 10.1016/S0166-2236(02)00040-1 PubMedCrossRefGoogle Scholar
  40. Hashimoto A, Kumashiro S, Nishikawa T, Oka T, Takahashi K, Mito T, Takashima S, Doi N, Mizutani Y, Yamazaki T et al (1993) Embryonic development and postnatal changes in free d-aspartate and d-serine in the human prefrontal cortex. J Neurochem 61(1):348–351PubMedCrossRefGoogle Scholar
  41. Hashimoto A, Oka T, Nishikawa T (1995) Anatomical distribution and postnatal changes in endogenous free d-aspartate and d-serine in rat brain and periphery. Eur J Neurosci 7(8):1657–1663PubMedCrossRefGoogle Scholar
  42. Horio M, Ishima T, Fujita Y, Inoue R, Mori H, Hashimoto K (2013) Decreased levels of free d-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice. Neurochem Int 62(6):843–847. doi: 10.1016/j.neuint.2013.02.015 PubMedCrossRefGoogle Scholar
  43. Huang AS, Beigneux A, Weil ZM, Kim PM, Molliver ME, Blackshaw S, Nelson RJ, Young SG, Snyder SH (2006) d-aspartate regulates melanocortin formation and function: behavioral alterations in d-aspartate oxidase-deficient mice. J Neurosci 26(10):2814–2819PubMedCrossRefGoogle Scholar
  44. Ikonomidou C, Bittigau P, Koch C, Genz K, Hoerster F, Felderhoff-Mueser U, Tenkova T, Dikranian K, Olney JW (2001) Neurotransmitters and apoptosis in the developing brain. Biochem Pharmacol 62(4):401–405PubMedCrossRefGoogle Scholar
  45. Javitt DC, Zukin SR, Heresco-Levy U, Umbricht D (2012) Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr Bull 38(5):958–966. doi: 10.1093/schbul/sbs069 sbs069 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  46. Katane M, Homma H (2010) d-aspartate oxidase: the sole catabolic enzyme acting on free d-aspartate in mammals. Chem Biodivers 7(6):1435–1449. doi: 10.1002/cbdv.200900250 PubMedCrossRefGoogle Scholar
  47. Kim PM, Aizawa H, Kim PS, Huang AS, Wickramasinghe SR, Kashani AH, Barrow RK, Huganir RL, Ghosh A, Snyder SH (2005) Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci U S A 102(6):2105–2110. doi:0409723102 [pii]  10.1073/pnas.0409723102
  48. Kim PM, Duan X, Huang AS, Liu CY, Ming GL, Song H, Snyder SH (2010) Aspartate racemase, generating neuronal d-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci U S A 107(7):3175–3179. doi: 10.1073/pnas.0914706107 0914706107 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kochhar S, Christen P (1992) Mechanism of racemization of amino acids by aspartate aminotransferase. Eur J Biochem 203(3):563–569PubMedCrossRefGoogle Scholar
  50. Koyama H, Adachi M, Sekine M, Katane M, Furuchi T, Homma H (2006) Cytoplasmic localization and efflux of endogenous d-aspartate in pheochromocytoma 12 cells. Arch Biochem Biophys 446(2):131–139. doi:S0003-9861(05)00513-8 [pii]  10.1016/j.abb.2005.12.008
  51. Krebs HA (1935) Metabolism of amino-acids: deamination of amino-acids. Biochem J 29(7):1620–1644PubMedPubMedCentralCrossRefGoogle Scholar
  52. Labrie V, Duffy S, Wang W, Barger SW, Baker GB, Roder JC (2009) Genetic inactivation of d-amino acid oxidase enhances extinction and reversal learning in mice. Learn Mem 16(1):28–37. doi: 10.1101/lm.1112209 16/1/28 [pii]
  53. Labrie V, Wong AH, Roder JC (2012) Contributions of the d-serine pathway to schizophrenia. Neuropharmacology 62 (3):1484–1503. doi:S0028-3908(11)00041-4 [pii]  10.1016/j.neuropharm.2011.01.030
  54. Lancelot E, Beal MF (1998) Glutamate toxicity in chronic neurodegenerative disease. Prog Brain Res 116:331–347PubMedCrossRefGoogle Scholar
  55. Li Y, Sacchi S, Pollegioni L, Basu AC, Coyle JT, Bolshakov VY (2013) Identity of endogenous NMDAR glycine site agonist in amygdala is determined by synaptic activity level. Nat Commun 4:1760. doi: 10.1038/ncomms2779 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Long Z, Homma H, Lee JA, Fukushima T, Santa T, Iwatsubo T, Yamada R, Imai K (1998) Biosynthesis of d-aspartate in mammalian cells. FEBS Lett 434(3):231–235PubMedCrossRefGoogle Scholar
  57. Long Z, Lee JA, Okamoto T, Sekine M, Nimura N, Imai K, Yohda M, Maruyama T, Sumi M, Kamo N, Yamagishi A, Oshima T, Homma H (2001) Occurrence of d-Amino Acids and a pyridoxal 5′-phosphate-dependent aspartate racemase in the acidothermophilic archaeon, Thermoplasma acidophilum. Biochem Biophys Res Commun 281(2):317–321. doi: 10.1006/bbrc.2001.4353 PubMedCrossRefGoogle Scholar
  58. Lu L, Mamiya T, Koseki T, Mouri A, Nabeshima T (2011) Genetic animal models of schizophrenia related with the hypothesis of abnormal neurodevelopment. Biol Pharm Bull 34(9):1358–1363PubMedCrossRefGoogle Scholar
  59. Malthe-Sorenssen D, Skrede KK, Fonnum F (1979) Calcium-dependent release of d-[3H]aspartate evoked by selective electrical stimulation of excitatory afferent fibres to hippocampal pyramidal cells in vitro. Neuroscience 4(9):1255–1263, doi:0306-4522(79)90155-6 [pii]PubMedCrossRefGoogle Scholar
  60. Martineau M, Baux G, Mothet JP (2006) d-serine signalling in the brain: friend and foe. Trends Neurosci 29 (8):481–491. doi:S0166-2236(06)00122-6 [pii]  10.1016/j.tins.2006.06.008
  61. Moghaddam B, Javitt D (2012) From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37(1):4–15. doi: 10.1038/npp.2011.181 npp2011181 [pii]PubMedCrossRefGoogle Scholar
  62. Molinaro G, Pietracupa S, Di Menna L, Pescatori L, Usiello A, Battaglia G, Nicoletti F, Bruno V (2010) d-aspartate activates mGlu receptors coupled to polyphosphoinositide hydrolysis in neonate rat brain slices. Neurosci Lett 478(3):128–130PubMedCrossRefGoogle Scholar
  63. Monahan JB, Michel J (1987) Identification and characterization of an N-methyl-d-aspartate-specific l-[3H]glutamate recognition site in synaptic plasma membranes. J Neurochem 48(6):1699–1708PubMedCrossRefGoogle Scholar
  64. Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) d-serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci U S A 97(9):4926–4931PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nacher J, McEwen BS (2006) The role of N-methyl-d-asparate receptors in neurogenesis. Hippocampus 16(3):267–270. doi: 10.1002/hipo.20160 PubMedCrossRefGoogle Scholar
  66. Nakatsuka S, Hayashi M, Muroyama A, Otsuka M, Kozaki S, Yamada H, Moriyama Y (2001) d-Aspartate is stored in secretory granules and released through a Ca(2+)-dependent pathway in a subset of rat pheochromocytoma PC12 cells. J Biol Chem 276(28):26589–26596. doi: 10.1074/jbc.M011754200 PubMedCrossRefGoogle Scholar
  67. Negri A, Ceciliani F, Tedeschi G, Simonic T, Ronchi S (1992) The primary structure of the flavoprotein d-aspartate oxidase from beef kidney. J Biol Chem 267(17):11865–11871PubMedGoogle Scholar
  68. Neidle A, Dunlop DS (1990) Developmental changes in free d-aspartic acid in the chicken embryo and in the neonatal rat. Life Sci 46(21):1517–1522PubMedCrossRefGoogle Scholar
  69. Ogita K, Yoneda Y (1988) Disclosure by triton X-100 of NMDA-sensitive [3H] glutamate binding sites in brain synaptic membranes. Biochem Biophys Res Commun 153(2):510–517PubMedCrossRefGoogle Scholar
  70. Olverman HJ, Jones AW, Mewett KN, Watkins JC (1988) Structure/activity relations of N-methyl-d-aspartate receptor ligands as studied by their inhibition of [3H]D-2-amino-5-phosphonopentanoic acid binding in rat brain membranes. Neuroscience 26(1):17–31PubMedCrossRefGoogle Scholar
  71. Owen MJ, O’Donovan MC, Thapar A, Craddock N (2011) Neurodevelopmental hypothesis of schizophrenia. British J Psychiatry 198(3):173–175. doi: 10.1192/bjp.bp.110.084384 CrossRefGoogle Scholar
  72. Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78(4):969–1054PubMedGoogle Scholar
  73. Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150(3):633–646. doi: 10.1016/j.cell.2012.06.029 S0092-8674(12)00786-6 [pii]PubMedCrossRefGoogle Scholar
  74. Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G (2007) Physiological functions of d-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64(11):1373–1394. doi: 10.1007/s00018-007-6558-4 PubMedCrossRefGoogle Scholar
  75. Ransom RW, Stec NL (1988) Cooperative modulation of [3H]MK-801 binding to the N-methyl-d-aspartate receptor-ion channel complex by l-glutamate, glycine, and polyamines. J Neurochem 51(3):830–836PubMedCrossRefGoogle Scholar
  76. Ritter LM, Vazquez DM, Meador-Woodruff JH (2002) Ontogeny of ionotropic glutamate receptor subunit expression in the rat hippocampus. Brain Res Dev Brain Res 139(2):227–236PubMedCrossRefGoogle Scholar
  77. Rosenberg D, Artoul S, Segal AC, Kolodney G, Radzishevsky I, Dikopoltsev E, Foltyn VN, Inoue R, Mori H, Billard JM, Wolosker H (2013) Neuronal d-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 33(8):3533–3544. doi: 10.1523/JNEUROSCI.3836-12.2013 PubMedCrossRefGoogle Scholar
  78. Sacchi S, Caldinelli L, Cappelletti P, Pollegioni L, Molla G (2012) Structure-function relationships in human d-amino acid oxidase. Amino Acids 43(5):1833–1850. doi: 10.1007/s00726-012-1345-4 PubMedCrossRefGoogle Scholar
  79. Sakai K, Homma H, Lee JA, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Imai K (1998) Emergence of d-aspartic acid in the differentiating neurons of the rat central nervous system. Brain Res 808(1):65–71PubMedCrossRefGoogle Scholar
  80. Sawa A, Snyder SH (2003) Schizophrenia: neural mechanisms for novel therapies. Mol Med 9(1–2):3–9PubMedPubMedCentralGoogle Scholar
  81. Schell MJ, Cooper OB, Snyder SH (1997) d-aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci U S A 94(5):2013–2018PubMedPubMedCentralCrossRefGoogle Scholar
  82. Setoyama C, Miura R (1997) Structural and functional characterization of the human brain d-aspartate oxidase. J Biochem 121(4):798–803PubMedCrossRefGoogle Scholar
  83. Still JL, Buell MV et al (1949) Studies on the cyclophorase system; d-aspartic oxidase. J Biol Chem 179(2):831–837PubMedGoogle Scholar
  84. Tanaka-Hayashi A, Hayashi S, Inoue R, Ito T, Konno K, Yoshida T, Watanabe M, Yoshimura T, Mori H (2015) Is d-aspartate produced by glutamic-oxaloacetic transaminase-1 like 1 (Got1l1): a putative aspartate racemase? Amino Acids 47:79–86. doi: 10.1007/s00726-014-1847-3 PubMedCrossRefGoogle Scholar
  85. Taxt T, Storm-Mathisen J (1984) Uptake of d-aspartate and l-glutamate in excitatory axon terminals in hippocampus: autoradiographic and biochemical comparison with gamma-aminobutyrate and other amino acids in normal rats and in rats with lesions. Neuroscience 11(1):79–100PubMedCrossRefGoogle Scholar
  86. Van Horn MR, Sild M, Ruthazer ES (2013) d-serine as a gliotransmitter and its roles in brain development and disease. Front Cell Neurosci 7:39. doi: 10.3389/fncel.2013.00039 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Van Veldhoven PP, Brees C, Mannaerts GP (1991) d-aspartate oxidase, a peroxisomal enzyme in liver of rat and man. Biochim Biophys Acta 1073(1):203–208PubMedCrossRefGoogle Scholar
  88. Wolosker H, Radzishevsky I (2013) The serine shuttle between glia and neurons: implications for neurotransmission and neurodegeneration. Biochem Soc Trans 41(6):1546–1550. doi: 10.1042/BST20130220 BST20130220 [pii]PubMedCrossRefGoogle Scholar
  89. Wolosker H, D’Aniello A, Snyder SH (2000) d-aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100(1):183–189PubMedCrossRefGoogle Scholar
  90. Yamauchi T, Choi SY, Okada H, Yohda M, Kumagai H, Esaki N, Soda K (1992) Properties of aspartate racemase, a pyridoxal 5′-phosphate-independent amino acid racemase. J Biol Chem 267(26):18361–18364PubMedGoogle Scholar
  91. Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of d-serine. Proc Natl Acad Sci U S A 100(25):15194–15199. doi: 10.1073/pnas.2431073100 2431073100 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  92. Zaar K, Kost HP, Schad A, Volkl A, Baumgart E, Fahimi HD (2002) Cellular and subcellular distribution of d-aspartate oxidase in human and rat brain. J Comp Neurol 450(3):272–282PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Laboratory of Behavioural NeuroscienceCeinge Biotecnologie AvanzateNaplesItaly
  2. 2.Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”NaplesItaly
  3. 3.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesThe Second University of Naples (SUN)CasertaItaly

Personalised recommendations