D-Amino Acids pp 199-218 | Cite as

Homeostasis of Free d-Aspartate in Mammalian Cells

  • Hiroshi HommaEmail author
  • Masumi Katane


Among the free d-amino acids found in mammals, d-aspartate (d-Asp) has been shown to play crucial roles in the central nervous, neuroendocrine, and endocrine systems. Here, we present an overview of recent studies on free d-Asp, focusing on homeostasis in mammalian cells, especially the molecular mechanisms necessary to synthesize, degrade, and release d-Asp.


d-Aspartate Homeostasis Biosynthesis Degradation Efflux 


  1. Abe K, Takahashi S, Muroki Y, Kera Y, Yamada R (2006) Cloning and expression of the pyridoxal 5′-phosphate-dependent aspartate racemase gene from the bivalve mollusk Scapharca broughtonii and characterization of the recombinant enzyme. J Biochem 139:235–244CrossRefPubMedGoogle Scholar
  2. Adachi M, Koyama H, Long Z, Sekine M, Furuchi T, Imai K, Nimura N, Shimamoto K, Nakajima T, Homma H (2004) l-Glutamate in the extracellular space regulates endogenous d-aspartate homeostasis in rat pheochromocytoma MPT1 cells. Arch Biochem Biophys 424:89–96CrossRefPubMedGoogle Scholar
  3. Assisi L, Botte V, D’Aniello A, Di Fiore MM (2001) Enhancement of aromatase activity by d-aspartic acid in the ovary of the lizard Podarcis s. sicula. Reproduction 121:803–808CrossRefPubMedGoogle Scholar
  4. Beard ME (1990) d-Aspartate oxidation by rat and bovine renal peroxisomes: an electron microscopic cytochemical study. J Histochem Cytochem 38:1377–1381CrossRefPubMedGoogle Scholar
  5. D’Aniello A (2007) d-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53:215–234CrossRefPubMedGoogle Scholar
  6. D’Aniello A, D’Onofrio G, Pischetola M, D’Aniello G, Vetere A, Petrucelli L, Fisher GH (1993a) Biological role of d-amino acid oxidase and d-aspartate oxidase. Effects of d-amino acids. J Biol Chem 268:26941–26949PubMedGoogle Scholar
  7. D’Aniello A, Vetere A, Petrucelli L (1993b) Further study on the specificity of d-amino acid oxidase and d-aspartate oxidase and time course for complete oxidation of d-amino acids. Comp Biochem Physiol B 105:731–734PubMedGoogle Scholar
  8. D’Aniello S, Spinelli P, Ferrandino G, Peterson K, Tsesarskia M, Fisher G, D’Aniello A (2005) Cephalopod vision involves dicarboxylic amino acids: d-aspartate, l-aspartate and l-glutamate. Biochem J 386:331–340CrossRefPubMedPubMedCentralGoogle Scholar
  9. D’Aniello S, Somorjai I, Garcia-Fernàndez J, Topo E, D’Aniello A (2011) d-Aspartic acid is a novel endogenous neurotransmitter. FASEB J 25:1014–1027CrossRefPubMedGoogle Scholar
  10. Di Fiore MM, Santillo A, Baccari GC (2014) Current knowledge of d-aspartate in glandular tissues. Amino Acids 46:1805–1818CrossRefPubMedGoogle Scholar
  11. Dunlop DS, Neidle A, McHale D, Dunlop DM, Lajtha A (1986) The presence of free d-aspartic acid in rodents and man. Biochem Biophys Res Commun 26:27–32CrossRefGoogle Scholar
  12. Errico F, Nisticò R, Palma G, Federici M, Affuso A, Brilli E, Topo E, Centonze D, Bernardi G, Bozzi Y, D’Aniello A, Di Lauro R, Mercuri NB, Usiello A (2008a) Increased levels of d-aspartate in the hippocampus enhance LTP but do not facilitate cognitive flexibility. Mol Cell Neurosci 37:236–246CrossRefPubMedGoogle Scholar
  13. Errico F, Rossi S, Napolitano F, Catuogno V, Topo E, Fisone G, D’Aniello A, Centonze D, Usiello A (2008b) d-aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci 28:10404–10414CrossRefPubMedGoogle Scholar
  14. Errico F, Napolitano F, Nisticò R, Centonze D, Usiello A (2009) d-aspartate: an atypical amino acid with neuromodulatory activity in mammals. Rev Neurosci 20:429–440CrossRefPubMedGoogle Scholar
  15. Errico F, Nisticò R, Napolitano F, Bonito-Oliva A, Romano R, Barbieri F, Florio T, Russo C, Mercuri NB, Usiello A (2011a) Persistent increase of d-aspartate in d-aspartate oxidase mutant mice induces a precocious hippocampal age-dependent synaptic plasticity and spatial memory decay. Neurobiol Aging 32:2061–2074CrossRefPubMedGoogle Scholar
  16. Errico F, Bonito-Oliva A, Bagetta V, Vitucci D, Romano R, Zianni E, Napolitano F, Marinucci S, Di Luca M, Calabresi P, Fisone G, Carta M, Picconi B, Gardoni F, Usiello A (2011b) Higher free d-aspartate and N-methyl-d-aspartate levels prevent striatal depotentiation and anticipate l-DOPA-induced dyskinesia. Exp Neurol 232:240–250CrossRefPubMedGoogle Scholar
  17. Errico F, Napolitano F, Nisticò R, Usiello A (2012) New insights on the role of free d-aspartate in the mammalian brain. Amino Acids 43:1861–1871CrossRefPubMedGoogle Scholar
  18. Errico F, Nisticò R, Di Giorgio A, Squillace M, Vitucci D, Galbusera A, Piccinin S, Mango D, Fazio L, Middei S, Trizio S, Mercuri NB, Teule MA, Centonze D, Gozzi A, Blasi G, Bertolino A, Usiello A (2014) Free d-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals. Transl Psychiatry 4, e417CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fagg GE, Matus A (1984) Selective association of N-methyl aspartate and quisqualate types of l-glutamate receptor with brain postsynaptic densities. Proc Natl Acad Sci U S A 81:6876–6880CrossRefPubMedPubMedCentralGoogle Scholar
  20. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749CrossRefPubMedGoogle Scholar
  21. Fujii N (2005) d-Amino acid in elderly tissues. Biol Pharm Bull 28:1585–1589CrossRefPubMedGoogle Scholar
  22. Fujii N, Kaji Y, Fujii N, Nakamura T, Motoie R, Mori Y, Kinouchi T (2010) Collapse of homochirality of amino acids in proteins from various tissues during aging. Chem Biodiversity 7:1389–1397CrossRefGoogle Scholar
  23. Funakoshi M, Sekine M, Katane M, Furuchi T, Yohda M, Yoshikawa T, Homma H (2008) Cloning and functional characterization of Arabidopsis thaliana d-amino acid aminotransferase—d-aspartate behavior during germination. FEBS J 275:1188–1200CrossRefPubMedGoogle Scholar
  24. Furuchi T, Homma H (2005) Free d-aspartate in mammals. Biol Pharm Bull 28:1566–1570CrossRefPubMedGoogle Scholar
  25. Furuchi T, Suzuki T, Sekine M, Katane M, Homma H (2009) Apoptotic inducers activate the release of d-aspartate through a hypotonic stimulus-triggered mechanism in PC12 cells. Arch Biochem Biophys 490:118–128CrossRefPubMedGoogle Scholar
  26. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759CrossRefPubMedGoogle Scholar
  27. Hashimoto A, Oka T, Nishikawa T (1995) Anatomical distribution and postnatal changes in endogenous free d-aspartate and d-serine in rat brain and periphery. Eur J Neurosci 7:1657–1663CrossRefPubMedGoogle Scholar
  28. Henneberger C, Papouin T, Oliet SHR, Rusakov DA (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463:232–236CrossRefPubMedPubMedCentralGoogle Scholar
  29. Homma H (2002) d-Aspartate in the mammalian body. Viva Origino 30:204–215 (available online at
  30. Homma H (2007) Biochemistry of d-aspartate in mammalian cells. Amino Acids 32:3–11CrossRefPubMedGoogle Scholar
  31. Horio M, Ishima T, Fujita Y, Inoue R, Mori H, Hashimoto K (2013) Decreased levels of free d-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice. Neurochem Int 62:843–847CrossRefPubMedGoogle Scholar
  32. Kang N, Peng H, Yu Y, Stanton PK, Guilarte TR, Kang J (2013) Astrocytes release d-serine by a large vesicle. Neuroscience 240:243–257CrossRefPubMedPubMedCentralGoogle Scholar
  33. Katane M, Homma H (2010) d-Aspartate oxidase: the sole catabolic enzyme acting on free d-aspartate in mammals. Chem Biodiversity 7:1435–1449CrossRefGoogle Scholar
  34. Katane M, Homma H (2011) d-Aspartate—an important bioactive substance in mammals: a review from an analytical and biological point of view. J Chromatogr B 879:3108–3121CrossRefGoogle Scholar
  35. Katane M, Furuchi T, Sekine M, Homma H (2007) Molecular cloning of a cDNA encoding mouse d-aspartate oxidase and functional characterization of its recombinant proteins by site-directed mutagenesis. Amino Acids 32:69–78CrossRefPubMedGoogle Scholar
  36. Katane M, Saitoh Y, Hanai T, Sekine M, Furuchi T, Koyama N, Nakagome I, Tomoda H, Hirono S, Homma H (2010) Thiolactomycin inhibits d-aspartate oxidase: a novel approach to probing the active site environment. Biochimie 92:1371–1378CrossRefPubMedGoogle Scholar
  37. Katane M, Saitoh Y, Maeda K, Hanai T, Sekine M, Furuchi T, Homma H (2011) Role of the active site residues arginine-216 and arginine-237 in the substrate specificity of mammalian d-aspartate oxidase. Amino Acids 40:467–476CrossRefPubMedGoogle Scholar
  38. Katane M, Osaka N, Matsuda S, Maeda K, Kawata T, Saitoh Y, Sekine M, Furuchi T, Doi I, Hirono S, Homma H (2013) Identification of novel d-amino acid oxidase inhibitors by in silico screening and their functional characterization in vitro. J Med Chem 56:1894–1907CrossRefPubMedGoogle Scholar
  39. Katane M, Kawata T, Nakayama K, Saitoh Y, Kaneko Y, Matsuda S, Saitoh Y, Miyamoto T, Sekine M, Homma H (2015) Characterization of the enzymatic and structural properties of human d-aspartate oxidase and comparison with those of the rat and mouse enzymes. Biol Pharm Bull 38:298–305CrossRefPubMedGoogle Scholar
  40. Kawazoe T, Tsuge H, Pilone MS, Fukui K (2006) Crystal structure of human d-amino acid oxidase: context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si-face of the flavin ring. Protein Sci 15:2708–2717CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kera Y, Nagasaki H, Iwashima A, Yamada R (1993) Gender dependence of d-aspartate oxidase activity in rat tissues. Comp Biochem Physiol B 104:739–742PubMedGoogle Scholar
  42. Kim PM, Duan X, Huang AS, Liu CY, Ming G-L, Song H, Snyder SH (2010) Aspartate racemase, generating neuronal d-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci U S A 107:3175–3179CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kinouchi T, Ishiura S, Mabuchi Y, Urakami-Manaka Y, Nishio H, Nishiuchi Y, Tsunemi M, Takada K, Watanabe M, Ikeda M, Matsui H, Tomioka S, Kawahara H, Hamamoto T, Suzuki K, Kagawa Y (2004) Mammalian d-aspartyl endopeptidase: a scavenger for noxious racemized proteins in aging. Biochem Biophys Res Commun 314:730–736CrossRefPubMedGoogle Scholar
  44. Koyama H, Sekine M, Furuchi T, Katane M, Nimura N, Shimamoto K, Nakajima T, Homma H (2005) A novel l-glutamate transporter inhibitor reveals endogenous d-aspartate homeostasis in rat pheochromocytoma MPT1 cells. Life Sci 76:2933–2944CrossRefPubMedGoogle Scholar
  45. Koyama H, Adachi M, Sekine M, Katane M, Furuchi T, Homma H (2006) Cytoplasmic localization and efflux of endogenous d-aspartate in pheochromocytoma 12 cells. Arch Biochem Biophys 446:131–139CrossRefPubMedGoogle Scholar
  46. Krebs HA (1935) Metabolism of amino-acids: deamination of amino-acids. Biochem J 29:1620–1644CrossRefPubMedPubMedCentralGoogle Scholar
  47. Long Z, Homma H, Lee J-A, Fukushima T, Santa T, Iwatsubo T, Yamada R, Imai K (1998) Biosynthesis of d-aspartate in mammalian cells. FEBS Lett 434:231–235CrossRefPubMedGoogle Scholar
  48. Long Z, Lee J-A, Okamoto T, Nimura N, Imai K, Homma H (2000) d-Aspartate in a prolactin-secreting clonal strain of rat pituitary tumor cells (GH3). Biochem Biophys Res Commun 276:1143–1147CrossRefPubMedGoogle Scholar
  49. Long Z, Sekine M, Nimura N, Lee J-A, Imai K, Iwatsubo T, Homma H (2001) Immunocytochemical study of d-aspartate in the 2068 rat pheochromocytoma cell line. Bioimages 9:61–67Google Scholar
  50. Long Z, Sekine M, Adachi M, Furuchi T, Imai K, Nimura N, Homma H (2002) Cell density inversely regulates d- and l-aspartate levels in rat pheochromocytoma MTP1 cells. Arch Biochem Biophys 404:92–97CrossRefPubMedGoogle Scholar
  51. Matsuda S, Katane M, Maeda K, Kaneko Y, Saitoh Y, Miyamoto T, Sekine M, Homma H (2015) Biosynthesis of d-aspartate in mammals—the rat and human homologues of mouse aspartate racemase are not responsible for the biosynthesis of d-aspartate. Amino Acids (in press). doi: 10.1007/s00726-015-1926-0
  52. Mattevi A, Vanoni MA, Todone F, Rizzi M, Teplyakov A, Coda A, Bolognesi M, Curti B (1996) Crystal structure of d-amino acid oxidase: a case of active site mirror-image convergent evolution with flavocytochrome b 2. Proc Natl Acad Sci U S A 93:7496–7501CrossRefPubMedPubMedCentralGoogle Scholar
  53. Maucler C, Pernot P, Vasylieva N, Pollegioni L, Marinesco S (2013) In vivo d-serine hetero-exchange through alanine-serine-cysteine (ASC) transporters detected by microelectrode biosensors. ACS Chem Neurosci 4:772–781CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nakatsuka S, Hayashi M, Muroyama A, Otsuka M, Kozaki S, Yamada H, Moriyama Y (2001) d-Aspartate is stored in secretory granules and released through a Ca2+-dependent pathway in a subset of rat pheochromocytoma PC12 cells. J Biol Chem 276:26589–26596CrossRefPubMedGoogle Scholar
  55. Neidle A, Dunlop DS (1990) Developmental changes in free d-aspartic acid in the chicken embryo and in the neonatal rat. Life Sci 46:1517–1522CrossRefPubMedGoogle Scholar
  56. Ohide H, Miyoshi Y, Maruyama R, Hamase K, Konno R (2011) d-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study. J Chromatogr B 879:3162–3168CrossRefGoogle Scholar
  57. Olverman HJ, Jones AW, Mewett KN, Watkins JC (1988) Structure/activity relations of N-methyl-d-aspartate receptor ligands as studied by their inhibition of [3H]d-2-amino-5-phosphonopentanoic acid binding in rat brain membranes. Neuroscience 26:17–31CrossRefPubMedGoogle Scholar
  58. Ota N, Shi T, Sweedler JV (2012) d-aspartate acts as a signaling molecule in nervous and neuroendocrine systems. Amino Acids 43:1873–1886CrossRefPubMedPubMedCentralGoogle Scholar
  59. Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A (2014) SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157:447–458CrossRefPubMedPubMedCentralGoogle Scholar
  60. Raucci F, Santillo A, D’Aniello A, Chieffi P, Baccari GC (2005) d-aspartate modulates transcriptional activity in Harderian gland of frog, Rana esculenta: morphological and molecular evidence. J Cell Physiol 204:445–454CrossRefPubMedGoogle Scholar
  61. Rosenberg D, Artoul S, Segal AC, Kolodney G, Radzishevsky I, Dikopoltsev E, Foltyn VN, Inoue R, Mori H, Billard J-M, Wolosker H (2013) Neuronal d-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 33:3533–3544CrossRefPubMedGoogle Scholar
  62. Sakai K, Homma H, Lee J-A, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Imai K (1998) Emergence of d-aspartic acid in the differentiating neurons of the rat central nervous system. Brain Res 808:65–71CrossRefPubMedGoogle Scholar
  63. Schell MJ, Cooper OB, Snyder SH (1997) d-aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci U S A 94:2013–2018CrossRefPubMedPubMedCentralGoogle Scholar
  64. Schrödinger Suite 2009. Schrödinger, LLC, New York, NY, USAGoogle Scholar
  65. Shibata K, Watanabe T, Yoshikawa H, Abe K, Takahashi S, Kera Y, Yamada R (2003a) Purification and characterization of aspartate racemase from the bivalve mollusk Scapharca broughtonii. Comp Biochem Physiol B Biochem Mol Biol 134:307–314CrossRefPubMedGoogle Scholar
  66. Shibata K, Watanabe T, Yoshikawa H, Abe K, Takahashi S, Kera Y, Yamada R (2003b) Nucleotides modulate the activity of aspartate racemase of Scapharca broughtonii. Comp Biochem Physiol B Biochem Mol Biol 134:713–719CrossRefPubMedGoogle Scholar
  67. Spinelli P, Brown ER, Ferrandino G, Branno M, Montarolo PG, D’Aniello E, Rastogi RK, D’Aniello B, Baccari GC, Fisher G, D’Aniello A (2006) d-aspartic acid in the nervous system of Aplysia limacina: possible role in neurotransmission. J Cell Physiol 206:672–681CrossRefPubMedGoogle Scholar
  68. Still JL, Buell MV, Knox WE, Green DE (1949) Studies on the cyclophorase system. VII. d-aspartic oxidase. J Biol Chem 179:831–837PubMedGoogle Scholar
  69. Tanaka-Hayashi A, Hayashi S, Inoue R, Ito K, Konno K, Yoshida T, Watanabe M, Yoshimura T, Mori H (2015) Is d-aspartate produced by glutamic-oxaloacetic transaminase-1 like 1 (Got1l1): a putative aspartate racemase? Amino Acids 47:79–86CrossRefPubMedGoogle Scholar
  70. Van Veldhoven PP, Brees C, Mannaerts GP (1991) d-aspartate oxidase, a peroxisomal enzyme in liver of rat and man. Biochim Biophys Acta 1073:203–208CrossRefPubMedGoogle Scholar
  71. Voss FK, Ullrich F, Münch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344:634–638CrossRefPubMedGoogle Scholar
  72. Wang L, Ota N, Romanova EV, Sweedler JV (2011) A novel pyridoxal 5′-phosphate-dependent amino acid racemase in the Aplysia californica central nervous system. J Biol Chem 286:13765–13774CrossRefPubMedPubMedCentralGoogle Scholar
  73. Watanabe T, Shibata K, Kera Y, Yamada R (1998) Occurrence of free d-aspartate and aspartate racemase in the blood shell Scapharca broughtonii. Amino Acids 14:353–360CrossRefPubMedGoogle Scholar
  74. Weil ZM, Huang AS, Beigneux A, Kim PM, Molliver ME, Blackshaw S, Young SG, Nelson RJ, Snyder SH (2006) Behavioural alterations in male mice lacking the gene for d-aspartate oxidase. Behav Brain Res 171:295–302CrossRefPubMedGoogle Scholar
  75. Wolosker H, D’Aniello A, Snyder SH (2000) d-aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100:183–189CrossRefPubMedGoogle Scholar
  76. Yamada R, Nagasaki H, Wakabayashi Y, Iwashima A (1988) Presence of d-aspartate oxidase in rat liver and mouse tissues. Biochim Biophys Acta 965:202–205CrossRefPubMedGoogle Scholar
  77. Zaar K (1996) Light and electron microscopic localization of d-aspartate oxidase in peroxisomes of bovine kidney and liver: an immunocytochemical study. J Histochem Cytochem 44:1013–1019CrossRefPubMedGoogle Scholar
  78. Zaar K, Völkl A, Fahimi HD (1989) d-aspartate oxidase in rat, bovine and sheep kidney cortex is localized in peroxisomes. Biochem J 261:233–238CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Life SciencesKitasato UniversityTokyoJapan

Personalised recommendations