D-Amino Acids pp 173-197 | Cite as

Free d-Aspartate in Nonmammalian Animals: Detection, Localization, Metabolism, and Function

  • Amit V. Patel
  • Takayuki Kawai
  • Stanislav S. Rubakhin
  • Jonathan V. SweedlerEmail author


Many functions of amino acids, including protein synthesis, require that they be in the l-form. As a result, in most biological systems, the levels of free d-amino acids (DAAs) are enzymatically suppressed. However, the site-specific synthesis, accumulation, and release of DAAs do occur. In fact, the accumulation of DAAs in the nervous, exocrine, and endocrine systems suggests that they perform specific functions. The focus here is on the well-studied DAA, d-aspartate; we review the advancements in the analytical approaches used for its detection and characterization and discuss the role it plays in the structural and functional organization of numerous biological systems of nonmammalian animals. The view that d-Asp has specific functions is supported by a large body of experimental data showing its endogenous synthesis, accumulation, release, stimulation of follower cells, uptake, and enzymatic catabolism. A variety of biological models, each having distinct anatomies, morphologies, biochemistries, and behaviors, have been used to investigate the fundamental mechanisms of d-Asp involvement in the normal and pathological functioning of cells and organisms. Many physiological and behavioral effects induced by d-Asp have been documented, demonstrating it has neurotransmitter, hormonal, and neuromodulator roles. Similar to many classical neurotransmitters, d-Asp has physiological roles that are conserved throughout the evolutionary tree, with nearly all studied animals shown to possess and use d-Asp.


d-aspartate d-amino acids Bioanalytical methods Neuromodulation Neurotransmission Signaling molecule Central nervous system 



This work was supported by the National Science Foundation (NSF), Division of Chemistry, under grant CHE-11-11705 (with co-funding from the Division of Biological Infrastructure), by Award No. RO1 NS031609 from the National Institute of Neurological Disorders and Stroke (NINDS) and Award Number P30 DA018310 from the National Institute on Drug Abuse (NIDA). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NSF, NINDS, NIDA, or the National Institutes of Health.


  1. Abe K (2006) Cloning and expression of the pyridoxal 5′-phosphate-dependent aspartate racemase gene from the bivalve mollusk Scapharca broughtonii and characterization of the recombinant enzyme. J Biochem 139(2):235–244. doi: 10.1093/jb/mvj028 PubMedCrossRefGoogle Scholar
  2. Adachi M, Koyama H, Long Z, Sekine M, Furuchi T, Imai K, Nimura N, Shimamoto K, Nakajima T, Homma H (2004) l-Glutamate in the extracellular space regulates endogenous d-aspartate homeostasis in rat pheochromocytoma MPT1 cells. Arch Biochem Biophys 424(1):89–96. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  3. Ali H, Pätzold R, Brückner H (2010) Gas chromatographic determination of amino acid enantiomers in bottled and aged wines. Amino Acids 38(3):951–958. doi: 10.1007/s00726-009-0304-1 PubMedCrossRefGoogle Scholar
  4. Allenmark S, Andersson S (1991) Chiral amino acid microanalysis by direct optical resolution of fluorescent derivatives on BSA-based (resolvosil) columns. Chromatographia 31(9-10):429–433. doi: 10.1007/BF02262384 CrossRefGoogle Scholar
  5. Armstrong DW, Yang X, Han SM, Menges RA (1987) Direct liquid chromatographic separation of racemates with an alpha-cyclodextrin bonded phase. Anal Chem 59(21):2594–2596. doi: 10.1021/ac00148a014 PubMedCrossRefGoogle Scholar
  6. Assisi L, Botte V, D’Aniello A, Di Fiore MM (2001) Enhancement of aromatase activity by d-aspartic acid in the ovary of the lizard Podarcis s. Sicula. Reproduction 121(5):803–808. doi: 10.1530/rep.0.1210803 PubMedCrossRefGoogle Scholar
  7. Aswad DW (1984) Determination of d- and l-aspartate in amino acid mixtures by high-performance liquid chromatography after derivatization with a chiral adduct of o-phthaldialdehyde. Anal Biochem 137(2):405–409. PubMedCrossRefGoogle Scholar
  8. Azua I, Goiriena I, Bana Z, Iriberri J, Unanue M (2014) Release and consumption of d-amino acids during growth of marine prokaryotes. Microb Ecol 67(1):1–12. doi: 10.1007/s00248-013-0294-0 PubMedCrossRefGoogle Scholar
  9. Baccari G, Di Fiore M, Monteforte R, Raucci F, D’Aniello A (2003) d-aspartic acid induces merocrine secretion in the frog harderian gland. Rend Fis Acc Lincei 14(3):205–215. doi: 10.1007/bf02904524 CrossRefGoogle Scholar
  10. Benner R, Herndl GJ (2011) Bacterially derived dissolved organic matter in the microbial carbon pump. In: Jiao N, Azam F, Sanders S (eds) Microbial carbon pump in the ocean. Science/AAAS, Washington, DC, pp 46–48. doi: 10.1126/science.opms.sb0001 Google Scholar
  11. Bertrand M, Chabin A, Brack A, Westall F (2008) Separation of amino acid enantiomers VIA chiral derivatization and non-chiral gas chromatography. J Chromatogr 1180(1–2):131–137. CrossRefGoogle Scholar
  12. Besson MT, Soustelle L, Birman S (2000) Selective high-affinity transport of aspartate by a Drosophila homologue of the excitatory amino-acid transporters. Curr Biol 10(4):207–210PubMedCrossRefGoogle Scholar
  13. Boudko DY (2010) Molecular ontology of amino acid transport. In: Gerencser GA (ed) Epithelial transport physiology. Humana Press, Totowa, NJ, pp 379–472. doi: 10.1007/978-1-60327-229-2_16
  14. Broer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88(1):249–286. doi: 10.1152/physrev.00018.2006 PubMedCrossRefGoogle Scholar
  15. Brückner H, Hausch M (1993) Gas chromatographic characterization of free d-amino acids in the blood serum of patients with renal disorders and of healthy volunteers. J Chromatogr 614(1):7–17. PubMedCrossRefGoogle Scholar
  16. Brückner H, Westhauser T (2003) Chromatographic determination of l- and d-amino acids in plants. Amino Acids 24(1–2):43–55. doi: 10.1007/s00726-002-0322-8 PubMedGoogle Scholar
  17. Buck RH, Krummen K (1987) High-performance liquid chromatographic determination of enantiomeric amino acids and amino alcohols after derivatization with o-phthaldialdehyde and various chiral mercaptans: application to peptide hydrolysates. J Chromatogr 387(0):255–265. PubMedCrossRefGoogle Scholar
  18. Burrone L, Di Giovanni M, Di Fiore MM, Chieffi Baccari G, Santillo A (2010) Effects of d-aspartate treatment on d-aspartate oxidase, superoxide dismutase, and caspase 3 activities in frog (Rana esculenta) tissues. Chem Biodivers 7:1459–1466. doi: 10.1002/cbdv.200900331 PubMedCrossRefGoogle Scholar
  19. Burrone L, Santillo A, Pinelli C, Baccari GC, Di Fiore MM (2012) Induced synthesis of P450 aromatase and 17β-estradiol by d-aspartate in frog brain. J Exp Biol 215(20):3559–3565. doi: 10.1242/jeb.073296 PubMedCrossRefGoogle Scholar
  20. Carlson SL, Fieber LA (2011) Physiological evidence that d-aspartate activates a current distinct from ionotropic glutamate receptor currents in Aplysia californica neurons. J Neurophysiol 106(4):1629–1636. doi: 10.1152/jn.00403.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Carlson SL, Kempsell AT, Fieber LA (2012) Pharmacological evidence that d-aspartate activates a current distinct from ionotropic glutamate receptor currents in Aplysia californica. Brain Behav 2(4):391–401. doi: 10.1002/brb3.60 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Case J (1964) Properties of the dactyl chemoreceptors of Cancer antennarius stimpson and C productus randall. Biol Bull 127(3):428–446. doi: 10.2307/1539246 CrossRefGoogle Scholar
  23. Cheng Y, Dovichi N (1988) Subattomole amino acid analysis by capillary zone electrophoresis and laser-induced fluorescence. Science 242(4878):562–564. doi: 10.1126/science.3140381 PubMedCrossRefGoogle Scholar
  24. D’Aniello A (2007) d-aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53(2):215–234. doi: 10.1016/j.brainresrev.2006.08.005 PubMedCrossRefGoogle Scholar
  25. D’Aniello S, Garcia-Fernandez J (2007) d-aspartic acid and l-amino acids in the neural system of the amphioxus Branchiostoma lanceolatum. Amino Acids 32(1):21–26PubMedCrossRefGoogle Scholar
  26. D’Aniello A, Giuditta A (1977) Identification of d-aspartic acid in the brain of Octopus vulgaris Lam. J Neurochem 29(6):1053–1057. doi: 10.1111/j.1471-4159.1977.tb06508.x PubMedCrossRefGoogle Scholar
  27. D’Aniello A, Giuditta A (1978) Presence of d-aspartate in squid axoplasm and in other regions of the cephalopod nervous system. J Neurochem 31(4):1107–1108. doi: 10.1111/j.1471-4159.1978.tb00155.x PubMedCrossRefGoogle Scholar
  28. D’Aniello A, Vetere A, Padula L (1992) Occurrence of free d-amino acids in the gametes, embryos, larvae and adults of the sea-squirt Ciona intestinalis. Comp Biochem Phys B 102(4):795–797. doi: 10.1016/0305-0491(92)90082-3 Google Scholar
  29. D’Aniello A, D’Onofrio G, Pischetola M, D’Aniello G, Vetere A, Petrucelli L, Fisher G (1993a) Biological role of d-amino acid oxidase and d-aspartate oxidase. Effects of d-amino acids. J Biol Chem 268:26941–26949PubMedGoogle Scholar
  30. D’Aniello A, Nardi G, Vetere A, Ferguson GP (1993b) Occurrence of free d-aspartic acid in the circumsoesophageal ganglia of Aplysia fasciata. Life Sci 52(8):733–736. doi: 10.1016/0024-3205(93)90235-u PubMedCrossRefGoogle Scholar
  31. D’Aniello A, Vetere A, Petrucelli L (1993c) Further study on the specificity of d-amino acid oxidase and of d-aspartate oxidase and time course for complete oxidation of d-amino acids. Comp Biochem Phys B 105(3–4):731–734. Google Scholar
  32. D’Aniello A, Nardi G, DeSantis A, Vetere A, diCosmo A, Marchelli R, Dossena A, Fisher G (1995) Free l-amino acids and d-aspartate content in the nervous system of Cephalopoda. A comparative study. Comp Biochem Phys B 112(4):661–666. doi: 10.1016/0305-0491(95)00227-8 CrossRefGoogle Scholar
  33. D’Aniello A, Spinelli P, De Simone A, D’Aniello S, Branno M, Aniello F, Fisher GH, Di Fiore MM, Rastogi RK (2003) Occurrence and neuroendocrine role of d-aspartic acid and N-methyl-d-aspartic acid in Ciona intestinalis. FEBS Lett 552(2–3):193–198. doi: 10.1016/s0014-5793(03)00921-9 PubMedCrossRefGoogle Scholar
  34. D’Aniello S, Spinelli P, Ferrandino G, Peterson K, Tsesarskia M, Fisher G, D’Aniello A (2005) Cephalopod vision involves dicarboxylic amino acids: d-aspartate, l-aspartate and l-glutamate. Biochem J 386:331–340. doi: 10.1042/BJ20041070 PubMedPubMedCentralCrossRefGoogle Scholar
  35. D’Aniello S, Somorjai I, Garcia-Fernandez J, Topo E, D’Aniello A (2010) d-aspartic acid is a novel endogenous neurotransmitter. FASEB J 25(3):1014–1027. doi: 10.1096/fj.10-168492 PubMedCrossRefGoogle Scholar
  36. Dalton JB, Schmidt CLA (1933) The solubilities of certain amino acids in water, the densities of their solutions at twenty-five degrees, and the calculated heats of solution and partial molal volumes. J Biol Chem 103(2):549–578Google Scholar
  37. Di Fiore MM, Assisi L, Botte V, D’Aniello A (1998) d-aspartic acid is implicated in the control of testosterone production by the vertebrate gonad. Studies on the female green frog, Rana esculenta. J Endocrinol 157(2):199–207. doi: 10.1677/joe.0.1570199 PubMedCrossRefGoogle Scholar
  38. Di Fiore MM, Santillo A, Chieffi Baccari G (2014) Current knowledge of d-aspartate in glandular tissues. Amino Acids 46(8):1805–1818. doi: 10.1007/s00726-014-1759-2 PubMedCrossRefGoogle Scholar
  39. Di Giovanni M, Burrone L, Chieffi Baccari G, Topo E, Santillo A (2010) Distribution of free d-aspartic acid and d-aspartate oxidase in frog Rana esculenta tissues. J Exp Zool A Ecol Genet Physiol 303:137–143. doi: 10.1002/jez.585 Google Scholar
  40. EMBL-EBI (2014) GO:0070779 d-aspartate import. Accessed 30 Nov 2014
  41. Errico F, Napolitano F, Nistico R, Centonze D, Usiello A (2009) d-aspartate: an atypical amino acid with neuromodulatory activity in mammals. Rev Neurosci 20(5–6):429–440PubMedGoogle Scholar
  42. Errico F, Napolitano F, Nistico R, Usiello A (2012) New insights on the role of free d-aspartate in the mammalian brain. Amino Acids 43(5):1861–1871. doi: 10.1007/s00726-012-1356-1 PubMedCrossRefGoogle Scholar
  43. Errico F, Di Maio A, Marsili V, Squillace M, Vitucci D, Napolitano F, Usiello A (2013) Bimodal effect of d-aspartate on brain aging processes: insights from animal models. J Biol Regul Homeost Agents 27(2):49–59PubMedGoogle Scholar
  44. Erwan E, Tomonaga S, Yoshida J, Nagasawa M, Ogino Y, Denbow DM, Furuse M (2012) Central administration of l- and d-aspartate attenuates stress behaviors by social isolation and CRF in neonatal chicks. Amino Acids 43(5):1969–1976. doi: 10.1007/s00726-012-1272-4 PubMedCrossRefGoogle Scholar
  45. Fieber LA, Carlson SL, Capo TR, Schmale MC (2010) Changes in d-aspartate ion currents in the Aplysia nervous system with aging. Brain Res 1343:28–36. doi: 10.1016/j.brainres.2010.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Foster AC, Fagg GE (1987) Comparison of l-[3H]glutamate, d-[3H]aspartate, dl-[3H]AP5 and [3H]NMDA as ligands for NMDA receptors in crude postsynaptic densities from rat brain. Eur J Pharmacol 133(3):291–300PubMedCrossRefGoogle Scholar
  47. Frank H, Nicholson GJ, Bayer E (1977) Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase. J Chromatogr Sci 15(5):174–176. doi: 10.1093/chromsci/15.5.174 PubMedCrossRefGoogle Scholar
  48. Friedman M (1999) Chemistry, nutrition, and microbiology of d-amino acids. J Agric Food Chem 47(9):3457–3479PubMedCrossRefGoogle Scholar
  49. Friedman M, Levin CE (2012) Nutritional and medicinal aspects of d-amino acids. Amino Acids 42(5):1553–1582. doi: 10.1007/s00726-011-0915-1 PubMedCrossRefGoogle Scholar
  50. Funakoshi M, Sekine M, Katane M, Furuchi T, Yohda M, Yoshikawa T, Homma H (2008) Cloning and functional characterization of Arabidopsis thaliana d-amino acid aminotransferase - d-aspartate behavior during germination. FEBS J 275(6):1188–1200. doi: 10.1111/j.1742-4658.2008.06279.x PubMedCrossRefGoogle Scholar
  51. Furuchi T, Homma H (2005) Free d-aspartate in mammals. Biol Pharm Bull 28(9):1566–1570PubMedCrossRefGoogle Scholar
  52. Gadea A, López E, López-Colomé A (2004) Glutamate-induced inhibition of d-aspartate uptake in Müller glia from the retina. Neurochem Res 29(1):295–304. doi: 10.1023/B:NERE.0000010458.45085.e8 PubMedCrossRefGoogle Scholar
  53. Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262(2):785–794PubMedGoogle Scholar
  54. Gomez TA, Banfield KL, Clarke SG (2008) The protein l-isoaspartyl-O-methyltransferase functions in the Caenorhabditis elegans stress response. Mech Ageing Dev 129(12):752–758. doi: 10.1016/j.mad.2008.09.019 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hamase K, Morikawa A, Etoh S, Tojo Y, Miyoshi Y, Zaitsu K (2009) Analysis of small amounts of d-amino acids and the study of their physiological functions in mammals. Anal Sci 25(8):961–968. doi: 10.2116/analsci.25.961 PubMedCrossRefGoogle Scholar
  56. Han H, Miyoshi Y, Ueno K, Okamura C, Tojo Y, Mita M, Lindner W, Zaitsu K, Hamase K (2011) Simultaneous determination of d-aspartic acid and d-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3196–3202. PubMedCrossRefGoogle Scholar
  57. Homma H (2007) Biochemistry of d-aspartate in mammalian cells. Amino Acids 32(1):3–11. doi: 10.1007/s00726-006-0354-6 PubMedCrossRefGoogle Scholar
  58. Hoopes EA, Peltzer ET, Bada JL (1978) Determination of amino acid enantiomeric ratios by gas liquid chromatography of the N-trifluoroacetyl-l-prolyl-peptide methyl esters. J Chromatogr Sci 16(11):556–560. doi: 10.1093/chromsci/16.11.556 CrossRefGoogle Scholar
  59. Jones WM, Ringe D, Soda K, Manning JM (1994) Determination of free d-amino acids with a bacterial transaminase: their depletion leads to inhibition of bacterial growth. Anal Biochem 218(1):204–209. PubMedCrossRefGoogle Scholar
  60. Kang L, Buck RH (1992) Separation and enantiomer determination of OPA-derivatised amino acids by using capillary zone electrophoresis. Amino Acids 2(1–2):103–109. doi: 10.1007/BF00806080 PubMedCrossRefGoogle Scholar
  61. Kaspar H, Dettmer K, Gronwald W, Oefner PJ (2008) Automated GC–MS analysis of free amino acids in biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 870(2):222–232. PubMedCrossRefGoogle Scholar
  62. Katane M, Homma H (2010) d-aspartate oxidase: the sole catabolic enzyme acting on free d-aspartate in mammals. Chem Biodivers 7(6):1435–1449. doi: 10.1002/cbdv.200900250 PubMedCrossRefGoogle Scholar
  63. Katane M, Homma H (2011) d-aspartate – an important bioactive substance in mammals: a review from an analytical and biological point of view. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3108–3121. doi: 10.1016/j.jchromb.2011.03.062 PubMedCrossRefGoogle Scholar
  64. Katane M, Saitoh Y, Seida Y, Sekine M, Furuchi T, Homma H (2010) Comparative characterization of three d-aspartate oxidases and one d-amino acid oxidase from Caenorhabditis elegans. Chem Biodivers 7(6):1424–1434. doi: 10.1002/cbdv.200900294 PubMedCrossRefGoogle Scholar
  65. Kera Y, Aoyama H, Watanabe N, Yamada RH (1996) Distribution of d-aspartate oxidase and free d-glutamate and d-aspartate in chicken and pigeon tissues. Comp Biochem Physiol B: Biochem Mol Biol 115(1):121–126CrossRefGoogle Scholar
  66. Kim PM, Duan X, Huang AS, Liu CY, Ming GL, Song HJ, Snyder SH (2010) Aspartate racemase, generating neuronal d-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci U S A 107(7):3175–3179. doi: 10.1073/pnas.0914706107 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kitagawa F, Otsuka K (2011) Recent progress in capillary electrophoretic analysis of amino acid enantiomers. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3078–3095, PubMedCrossRefGoogle Scholar
  68. Konno R (2007) d-amino acids: a new frontier in amino acids and protein research: practical methods and protocols. Nova Biomedical Books, New YorkGoogle Scholar
  69. Krehbiel CR, Matthews JC (2003) Absorption of amino acids and peptides. In: D’Mello JPF (ed) Amino acids in animal nutrition, 2nd edn. CABI Publishers, Wallingford/Cambridge, MA, pp 41–70CrossRefGoogle Scholar
  70. Lee J-A, Homma H, Sakai K, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Yoshikawa M, Imai K (1997) Immunohistochemical localization of d-aspartate in the rat pineal gland. Biochem Biophys Res Commun 231(2):505–508, PubMedCrossRefGoogle Scholar
  71. Long Z, Homma H, Lee J, Fukushima T, Santa T, Iwatsubo T, Yamada R, Imai K (1998) Biosynthesis of d-aspartate in mammalian cells. FEBS Lett 434(3):231–235PubMedCrossRefGoogle Scholar
  72. Man EH, Bada JL (1987) Dietary d-amino acids. Annu Rev Nutr 7:209–225. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  73. Masuda W, Nouso C, Kitamura C, Terashita M, Noguchi T (2003) Free d-aspartic acid in rat salivary glands. Arch Biochem Biophys 420(1):46–54, PubMedCrossRefGoogle Scholar
  74. Miao H, Rubakhin SS, Sweedler JV (2005) Subcellular analysis of d-aspartate. Anal Chem 77(22):7190–7194. doi: 10.1021/ac0511694 PubMedCrossRefGoogle Scholar
  75. Miao H, Rubakhin SS, Scanlan CR, Wang LP, Sweedler JV (2006a) d-aspartate as a putative cell-cell signaling molecule in the Aplysia californica central nervous system. J Neurochem 97(2):595–606. doi: 10.1111/j.1471-4159.2006.03891.x PubMedCrossRefGoogle Scholar
  76. Miao H, Rubakhin SS, Sweedler JV (2006b) Confirmation of peak assignments in capillary electrophoresis using immunoprecipitation. Application to d-aspartate measurements in neurons. J Chromatogr A 1106(1–2):56–60. doi: 10.1016/j.chroma.2005.09.037 PubMedCrossRefGoogle Scholar
  77. Miyoshi Y, Koga R, Oyama T, Han H, Ueno K, Masuyama K, Itoh Y, Hamase K (2012) HPLC analysis of naturally occurring free d-amino acids in mammals. J Pharm Biomed Anal 69:42–49, PubMedCrossRefGoogle Scholar
  78. Moini M, Schultz CL, Mahmood H (2003) CE/electrospray ionization-MS analysis of underivatized d/l-amino acids and several small neurotransmitters at attomole levels through the use of 18-crown-6-tetracarboxylic acid as a complexation reagent/background electrolyte. Anal Chem 75(22):6282–6287. doi: 10.1021/ac034708i PubMedCrossRefGoogle Scholar
  79. Monteforte R, Santillo A, Di Giovanni M, D’Aniello A, Di Maro A, Chieffi Baccari G (2009) d-aspartate affects secretory activity in rat Harderian gland: molecular mechanism and functional significance. Amino Acids 37(4):653–664. doi: 10.1007/s00726-008-0185-8 PubMedCrossRefGoogle Scholar
  80. Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K (2001) Determination of free d-aspartic acid, d-serine and d-alanine in the brain of mutant mice lacking d-amino-acid oxidase activity. J Chromatogr B Biomed Sci Appl 757(1):119–125, PubMedCrossRefGoogle Scholar
  81. Nagata Y, Akino T, Ohno K (1985) Microdetermination of serum d-amino acids. Anal Biochem 150(1):238–242, PubMedCrossRefGoogle Scholar
  82. Neidle A, Dunlop DS (1990) Developmental changes in free d-aspartic acid in the chicken embryo and in the neonatal rat. Life Sci 46(21):1517–1522. doi: 10.1016/0024-3205(90)90424-P PubMedCrossRefGoogle Scholar
  83. Nimura N, Kinoshita T (1986) O-Phthalaldehyde—N-acetyl-L-cysteine as a chiral derivatization reagent for liquid chromatographic optical resolution of amino acid ernantiomers and its application to conventional amino acid analysis. J Chromatogr 352:169–177, CrossRefGoogle Scholar
  84. Okuma E, Abe H (1994) Simultaneous determination of d- and l-amino acids in the nervous tissues of crustaceans using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase ion-pair high-performance liquid chromatography. J Chromatogr B Biomed Appl 660(2):243–250. doi: 10.1016/0378-4347(94)00304-1 PubMedCrossRefGoogle Scholar
  85. Ota N, Shi T, Sweedler J (2012) d-aspartate acts as a signaling molecule in nervous and neuroendocrine systems. Amino Acids 43(5):1873–1886. doi: 10.1007/s00726-012-1364-1 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Pasteur L (1852) Untersuchungen über Asparaginsäure und Aepfelsäure. Justus Liebigs Ann Chem 82(3):324–335. doi: 10.1002/jlac.18520820306 CrossRefGoogle Scholar
  87. Payan IL, Cadilla-Perezrios R, Fisher GH, Man EH (1985) Analysis of problems encountered in the determination of amino acid enantiomeric ratios by gas chromatography. Anal Biochem 149(2):484–491, PubMedCrossRefGoogle Scholar
  88. Perez MT, Pausz C, Herndl GJ (2003) Major shift in bacterioplankton utilization of enantiomeric amino acids between surface waters and the ocean’s interior. Limnol Oceanogr 48(2):755–763CrossRefGoogle Scholar
  89. Raucci F (2005) Endocrine roles of d-aspartic acid in the testis of lizard Podarcis s. sicula. J Endocrinol 187(3):347–359. doi: 10.1677/joe.1.06115 PubMedCrossRefGoogle Scholar
  90. Raucci F, Di Fiore MM (2010) The maturation of oocyte follicular epithelium of Podarcis s. sicula is promoted by d-aspartic acid. J Histochem Cytochem 58(2):157–171. doi: 10.1369/jhc.2009.954636 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Raucci F, Di Fiore MM (2011) d-Asp: a new player in reproductive endocrinology of the amphibian Rana esculenta. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3268–3276. doi: 10.1016/j.jchromb.2011.04.007 PubMedCrossRefGoogle Scholar
  92. Raucci F, Fiore MMD (2009) The reproductive activity in the testis of Podarcis s. sicula involves d-aspartic acid: a study on c-kit receptor protein, tyrosine kinase activity and PCNA protein during annual sexual cycle. Gen Comp Endocrinol 161(3):373–383. doi: 10.1016/j.ygcen.2009.02.002 PubMedCrossRefGoogle Scholar
  93. Raucci F, Assisi L, D’Aniello S, Spinelli P, Botte V, Di Fiore MM (2004) Testicular endocrine activity is upregulated by d-aspartic acid in the green frog, Rana esculenta. J Endocrinol 182(2):365–376PubMedCrossRefGoogle Scholar
  94. Raucci F, Santillo A, D’Aniello A, Chieffi P, Baccari GC (2005) d-aspartate modulates transcriptional activity in Harderian gland of frog, Rana esculenta: morphological and molecular evidence. J Cell Physiol 204(2):445–454. doi: 10.1002/jcp.20316 PubMedCrossRefGoogle Scholar
  95. Reissner K, Aswad D (2003) Deamidation and isoaspartate formation in proteins: unwanted alterations or surreptitious signals? Cell Mol Life Sci 60(7):1281–1295PubMedCrossRefGoogle Scholar
  96. Saitoh Y, Katane M, Kawata T, Maeda K, Sekine M, Furuchi T, Kobuna H, Sakamoto T, Inoue T, Arai H, Nakagawa Y, Homma H (2012) Spatiotemporal localization of d-amino acid oxidase and d-aspartate oxidases during development in Caenorhabditis elegans. Mol Cell Biol 32(10):1967–1983. doi: 10.1128/MCB.06513-11 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Santillo A, Monteforte R, Raucci F, D’Aniello A, Baccari GC (2006) Occurrence of d-aspartate in the harderian gland of Podarcis s. sicula and its effect on gland secretion. J Exp Zool A Comp Exp Biol 305A(8):610–619. doi: 10.1002/jez.a.301 CrossRefGoogle Scholar
  98. Santillo A, Pinelli C, Burrone L, Chieffi Baccari G, Di Fiore MM (2013) d-aspartic acid implication in the modulation of frog brain sex steroid levels. Gen Comp Endocrinol 181:72–76. doi: 10.1016/j.ygcen.2012.11.003 PubMedCrossRefGoogle Scholar
  99. Saunders NR, Daneman R, Dziegielewska KM, Liddelow SA (2013) Transporters of the blood-brain and blood-CSF interfaces in development and in the adult. Mol Aspects Med 34(2–3):742–752. doi: 10.1016/j.mam.2012.11.006 PubMedCrossRefGoogle Scholar
  100. Scanlan C, Shi T, Hatcher NG, Rubakhin SS, Sweedler JV (2010) Synthesis, accumulation, and release of d-aspartate in the Aplysia californica CNS. J Neurochem 115(5):1234–1244. doi: 10.1111/j.1471-4159.2010.07020.x PubMedPubMedCentralCrossRefGoogle Scholar
  101. Schell MJ, Cooper OB, Snyder SH (1997) d-aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci U S A 94(5):2013–2018PubMedPubMedCentralCrossRefGoogle Scholar
  102. Schieber A, Brückner H, Rupp-Classen M, Pecht W, Nowitzki-Gfimm S, Classen HG (1997) Evaluation of d-amino acid levels in rat by gas chromatography-selected ion monitoring mass spectrometry: no evidence for subacute toxicity of orally fed d-proline and d-aspartic acid. J Chromatogr B Biomed Sci Appl 691(1):1–12, PubMedCrossRefGoogle Scholar
  103. Shibata K, Watanabe T, Yoshikawa H, Abe K, Takahashi S, Kera Y, Yamada RH (2003) Purification and characterization of aspartate racemase from the bivalve mollusk Scapharca broughtonii. Comp Biochem Physiol B: Biochem Mol Biol 134(2):307–314. doi: 10.1016/s1096-4959(02)00267-1 CrossRefGoogle Scholar
  104. Shikata Y, Watanabe T, Teramoto T, Inoue A, Kawakami Y, Nishizawa Y, Katayama K, Kuwada M (1995) Isolation and characterization of a peptide isomerase from funnel-web spider venom. J Biol Chem 270(28):16719–16723. doi: 10.1074/jbc.270.28.16719 PubMedCrossRefGoogle Scholar
  105. Shinbo T, Yamaguchi T, Nishimura K, Sugiura M (1987) Chromatographic separation of racemic amino acids by use of chiral crown ether-coated reversed-phase packings. J Chromatogr 405:145–153, PubMedCrossRefGoogle Scholar
  106. Simo C, Rizzi A, Barbas C, Cifuentes A (2005) Chiral capillary electrophoresis-mass spectrometry of amino acids in foods. Electrophoresis 26(7–8):1432–1441. doi: 10.1002/elps.200406199 PubMedCrossRefGoogle Scholar
  107. Skoog DA, Holler FJ, Crouch SR (2007) Principles of instrumental analysis, 6th edn. Thomson Brooks/Cole, BelmontGoogle Scholar
  108. Song Y, Liang F, Liu Y-M (2007) Quantification of d-amino acids in the central nervous system of Aplysia californica by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21(1):73–77. doi: 10.1002/rcm.2803 PubMedCrossRefGoogle Scholar
  109. Song Y, Feng Y, Lu X, Zhao S, Liu CW, Liu YM (2008) d-amino acids in rat brain measured by liquid chromatography/tandem mass spectrometry. Neurosci Lett 445(1):53–57. doi: 10.1016/j.neulet.2008.08.058 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Soustelle L, Besson MT, Rival T, Birman S (2002) Terminal glial differentiation involves regulated expression of the excitatory amino acid transporters in the Drosophila embryonic CNS. Dev Biol 248(2):294–306PubMedCrossRefGoogle Scholar
  111. Spinelli P, Brown ER, Ferrandino G, Branno M, Montarolo PG, D’Aniello E, Rastogi RK, D’Aniello B, Baccari GC, Fisher G, D’Aniello A (2006) d-aspartic acid in the nervous system of Aplysia limacina: possible role in neurotransmission. J Cell Physiol 206(3):672–681. doi: 10.1002/jcp.20513 PubMedCrossRefGoogle Scholar
  112. Stephenson RC, Clarke S (1989) Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem 264(11):6164–6170PubMedGoogle Scholar
  113. Stevens BR (2010) Amino acid transport by epithelial membranes. In: Gerencser GA (ed) Epithelial transport physiology. Humana Press, Totowa, NJ, pp 353–378. doi: 10.1007/978-1-60327-229-2_15
  114. Still JL, Buell MV, Knox WE, Green DE (1949) Studies on the cyclophorase system; d-aspartic oxidase. J Biol Chem 179(2):831–837PubMedGoogle Scholar
  115. Swartz ME, Mazzeo JR, Grover ER, Brown PR (1995) Separation of amino acid enantiomers by micellar electrokinetic capillary chromatography using synthetic chiral surfactants. Anal Biochem 231(1):65–71, PubMedCrossRefGoogle Scholar
  116. Takahashi O (2014) Just three water molecules can trigger the undesired nonenzymatic reactions of aspartic acid residues: new insight from a quantum-chemical study. J Phys Conf Ser 490:012147. doi: 10.1088/1742-6596/490/1/012147 CrossRefGoogle Scholar
  117. Takigawa Y, Homma H, Lee JA, Fukushima T, Santa T, Iwatsubo T, Imai K (1998) d-aspartate uptake into cultured rat pinealocytes and the concomitant effect on l-aspartate levels and melatonin secretion. Biochem Biophys Res Commun 248(3):641–647. doi: 10.1006/bbrc.1998.8971 PubMedCrossRefGoogle Scholar
  118. Terabe S, Shibata M, Miyashita Y (1989) Chiral separation by electronkinetic chromatography while bile salt micelles. J Chromatogr 480:403–411, CrossRefGoogle Scholar
  119. Tivesten A, Lundqvist A, Folestad S (1997) Selective chiral determination of aspartic and glutamic acid in biological samples by capillary electrophoresis. Chromatographia 44(11–12):623–633. doi: 10.1007/Bf02466666 CrossRefGoogle Scholar
  120. Topo E, Soricelli A, Di Maio A, D’Aniello E, Di Fiore MM, D’Aniello A (2010) Evidence for the involvement of d-aspartic acid in learning and memory of rat. Amino Acids 38(5):1561–1569. doi: 10.1007/s00726-009-0369-x PubMedCrossRefGoogle Scholar
  121. Tsesarskaia M, Galindo E, Szókán G, Fisher G (2009) HPLC determination of acidic d-amino acids and their N-methyl derivatives in biological tissues. Biomed Chromatogr 23(6):581–587. doi: 10.1002/bmc.1156 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tverdislov VA, Yakovenko LV, Ivlieva AA, Tverdislova IL (2011) Ionic and chiral asymmetries as physical factors of biogenesis and ontogenesis. Mosc U Phys B+ 66(2):105–115. doi: 10.3103/S0027134911020184 CrossRefGoogle Scholar
  123. Ueda T, Kitamura F, Mitchell R, Metcalf T, Kuwana T, Nakamoto A (1991) Chiral separation of naphthalene-2,3-dicarboxaldehyde-labeled amino acid enantiomers by cyclodextrin-modified micellar electrokinetic chromatography with laser-induced fluorescence detection. Anal Chem 63(24):2979–2981. doi: 10.1021/ac00024a033 CrossRefGoogle Scholar
  124. Umesh A, Cohen BN, Ross LS, Gill SS (2003) Functional characterization of a glutamate/aspartate transporter from the mosquito Aedes aegypti. J Exp Biol 206(Pt 13):2241–2255PubMedCrossRefGoogle Scholar
  125. Villar-Cerviño V, Barreiro-Iglesias A, Rodicio MC, Anadón R (2010) d-serine is distributed in neurons in the brain of the sea lamprey. J Comp Neurol 518(10):1688–1710. doi: 10.1002/cne.22296 PubMedCrossRefGoogle Scholar
  126. Waldhier MC, Dettmer K, Gruber MA, Oefner PJ (2010) Comparison of derivatization and chromatographic methods for GC–MS analysis of amino acid enantiomers in physiological samples. J Chromatogr B Analyt Technol Biomed Life Sci 878(15–16):1103–1112, PubMedCrossRefGoogle Scholar
  127. Waldhier MC, Almstetter MF, Nürnberger N, Gruber MA, Dettmer K, Oefner PJ (2011) Improved enantiomer resolution and quantification of free d-amino acids in serum and urine by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J Chromatogr 1218(28):4537–4544, CrossRefGoogle Scholar
  128. Wan H, Blomberg LG (2000) Chiral separation of amino acids and peptides by capillary electrophoresis. J Chromatogr 875(1–2):43–88, CrossRefGoogle Scholar
  129. Wang LP, Ota N, Romanova EV, Sweedler JV (2011) A novel pyridoxal 5′-phosphate-dependent amino acid racemase in the Aplysia californica central nervous system. J Biol Chem 286(15):13765–13774. doi: 10.1074/jbc.M110.178228 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Welch CJ (1994) Evolution of chiral stationary phase design in the Pirkle laboratories. J Chromatogr 666(1–2):3–26, CrossRefGoogle Scholar
  131. Yamamoto A, Tanaka H, Ishida T, Horiike K (2011) Immunohistochemical localization of d-aspartate oxidase in porcine peripheral tissues. Amino Acids 41(2):529–536. doi: 10.1007/s00726-010-0785-y PubMedCrossRefGoogle Scholar
  132. Yamane H, Tsuneyoshi Y, Denbow DM, Furuse M (2009) N-methyl-d-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors involved in the induction of sedative effects under an acute stress in neonatal chicks. Amino Acids 37(4):733–739. doi: 10.1007/s00726-008-0203-x PubMedCrossRefGoogle Scholar
  133. Yang L, Chen CJ, Liu X, Shi J, Wang GA, Zhu LD, Guo LP, Glennon JD, Scully NM, Doherty BE (2010) Use of cyclodextrin-modified gold nanoparticles for enantioseparations of drugs and amino acids based on pseudostationary phase-capillary electrochromatography. Electrophoresis 31(10):1697–1705. doi: 10.1002/elps.200900541 PubMedCrossRefGoogle Scholar
  134. Zaar K (1996) Light and electron microscopic localization of d-aspartate oxidase in peroxisomes of bovine kidney and liver: an immunocytochemical study. J Histochem Cytochem 44(9):1013–1019. doi: 10.1177/44.9.8773567 PubMedCrossRefGoogle Scholar
  135. Zaar K, Köst H-P, Schad A, Völkl A, Baumgart E, Fahimi HD (2002) Cellular and subcellular distribution of d-aspartate oxidase in human and rat brain. J Comp Neurol 450(3):272–282. doi: 10.1002/cne.10320 PubMedCrossRefGoogle Scholar
  136. Zampolli MG, Basaglia G, Dondi F, Sternberg R, Szopa C, Pietrogrande MC (2007) Gas chromatography–mass spectrometry analysis of amino acid enantiomers as methyl chloroformate derivatives: application to space analysis. J Chromatogr 1150(1–2):162–172. CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Amit V. Patel
    • 1
  • Takayuki Kawai
    • 1
    • 2
  • Stanislav S. Rubakhin
    • 1
  • Jonathan V. Sweedler
    • 1
    Email author
  1. 1.Department of Chemistry and Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Integrated Biodevice UnitQuantitative Biology Center, RIKENChuo-ku, KobeJapan

Personalised recommendations