Metabolic Features of Acetobacter aceti

  • Hiroyuki AraiEmail author
  • Kenta Sakurai
  • Masaharu Ishii


Acetobacter aceti temporarily accumulates acetate as an incomplete oxidation product when cultured in the presence of ethanol. The accumulated acetate is utilized as a carbon and energy source via the tricarboxylic acid (TCA) cycle after the depletion of ethanol by the phenomenon termed acetate overoxidation. In this chapter, we provide an overview of the genomic features and whole-genome transcriptional profiles of A. aceti NBRC 14818 when cultured under various growth conditions to understand the molecular genetic basis for the metabolic switching from incomplete ethanol oxidation to acetate overoxidation. The genes encoding enzymes of the TCA cycle and glyoxylate pathway and components of the branched electron transport chain exhibit dynamic changes in expression according to the carbon sources and growth phases. In particular, the TCA cycle genes of A. aceti are significantly repressed in the presence of ethanol. The low activity of the TCA cycle in the presence of ethanol may slow the metabolism of acetyl-CoA and lead to the accumulation of acetate. The presence or absence of glyoxylate pathway genes in the genome of acetic acid bacteria is also predicted to affect acetate productivity.


Acetate Acetobacter aceti Electron transport chain Ethanol Glyoxylate pathway Incomplete oxidation Transcriptome Tricarboxylic acid cycle 


  1. Arai H (2011) Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa. Front Microbiol 2:103CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arai H, Kawakami T, Osamura T, Hirai T, Sakai Y, Ishii M (2014) Enzymatic characterization and in vivo function of five terminal oxidases in Pseudomonas aeruginosa. J Bacteriol 196:4206–4215CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asai T (1968) Acetic acid bacteria: classification and biochemical activities. University of Tokyo Press, TokyoGoogle Scholar
  4. Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37:5768–5783CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bekker M, de Vries S, Ter Beek A, Hellingwerf KJ, Teixeira de Mattos MJ (2009) Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase. J Bacteriol 191:5510–5517CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450CrossRefPubMedPubMedCentralGoogle Scholar
  7. Calhoun MW, Oden KL, Gennis RB, Teixeira de Mattos MJ, Neijssel OM (1993) Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain. J Bacteriol 175:3020–3025PubMedPubMedCentralGoogle Scholar
  8. Chinnawirotpisan P, Matsushita K, Toyama H, Adachi O, Limtong S, Theeragool G (2003) Purification and characterization of two NAD-dependent alcohol dehydrogenases (ADHs) induced in the quinoprotein ADH-deficient mutant of Acetobacter pasteurianus SKU1108. Biosci Biotechnol Biochem 67:958–965CrossRefPubMedGoogle Scholar
  9. Cunningham L, Pitt M, Williams HD (1997) The cioAB genes from Pseudomonas aeruginosa code for a novel cyanide-insensitive terminal oxidase related to the cytochrome bd quinol oxidases. Mol Microbiol 24:579–591CrossRefPubMedGoogle Scholar
  10. El-Mansi EM, Holms WH (1989) Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. J Gen Microbiol 135:2875–2883PubMedGoogle Scholar
  11. Flückiger J, Ettlinger L (1977) Glucose metabolism in Acetobacter aceti. Arch Microbiol 114:183–187CrossRefPubMedGoogle Scholar
  12. Greenberg DE, Porcella SF, Zelazny AM, Virtaneva K, Sturdevant DE, Kupko JJ 3rd, Barbian KD, Babar A, Dorward DW, Holland SM (2007) Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J Bacteriol 189:8727–8736CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gunsalus RP, Park SJ (1994) Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res Microbiol 145:437–450CrossRefPubMedGoogle Scholar
  14. Hung JE, Mill CP, Clifton SW, Magrini V, Bhide K, Francois JA, Ransome AE, Fulton L, Thimmapuram J, Wilson RK, Kappock TJ (2014) Draft genome sequence of Acetobacter aceti strain 1023, a vinegar factory isolate. Genome Announc 2:e00550–00514CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ishikawa M, Okamoto-Kainuma A, Jochi T, Suzuki I, Matsui K, Kaga T, Koizumi Y (2010a) Cloning and characterization of grpE in Acetobacter pasteurianus NBRC 3283. J Biosci Bioeng 109:25–31CrossRefPubMedGoogle Scholar
  16. Ishikawa M, Okamoto-Kainuma A, Matsui K, Takigishi A, Kaga T, Koizumi Y (2010b) Cloning and characterization of clpB in Acetobacter pasteurianus NBRC 3283. J Biosci Bioeng 110:69–71CrossRefPubMedGoogle Scholar
  17. Jackson RJ, Elvers KT, Lee LJ, Gidley MD, Wainwright LM, Lightfoot J, Park SF, Poole RK (2007) Oxygen reactivity of both respiratory oxidases in Campylobacter jejuni: the cydAB genes encode a cyanide-resistant, low-affinity oxidase that is not of the cytochrome bd type. J Bacteriol 189:1604–1615CrossRefPubMedGoogle Scholar
  18. Jucker W, Ettlinger L (1985) The inhibition of acetate oxidation by ethanol in Acetobacter aceti. Arch Microbiol 143:283–289CrossRefGoogle Scholar
  19. Kita K, Konishi K, Anraku Y (1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b 558-d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems. J Biol Chem 259:3375–3381PubMedGoogle Scholar
  20. Kornmann H, Duboc P, Niederberger P, Marison I, von Stockar U (2003) Influence of residual ethanol concentration on the growth of Gluconacetobacter xylinus I 2281. Appl Microbiol Biotechnol 62:168–173CrossRefPubMedGoogle Scholar
  21. Krajewski V, Simic P, Mouncey NJ, Bringer S, Sahm H, Bott M (2010) Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Appl Environ Microbiol 76:4369–4376CrossRefPubMedPubMedCentralGoogle Scholar
  22. Leif H, Sled VD, Ohnishi T, Weiss H, Friedrich T (1995) Isolation and characterization of the proton-translocating NADH: ubiquinone oxidoreductase from Escherichia coli. Eur J Biochem 230:538–548CrossRefPubMedGoogle Scholar
  23. Miura H, Mogi T, Ano Y, Migita CT, Matsutani M, Yakushi T, Kita K, Matsushita K (2013) Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd. J Biochem (Tokyo) 153:535–545CrossRefGoogle Scholar
  24. Mogi T, Ano Y, Nakatsuka T, Toyama H, Muroi A, Miyoshi H, Migita CT, Ui H, Shiomi K, Omura S, Kita K, Matsushita K (2009) Biochemical and spectroscopic properties of cyanide-insensitive quinol oxidase from Gluconobacter oxydans. J Biochem (Tokyo) 146:263–271CrossRefGoogle Scholar
  25. Mullins EA, Francois JA, Kappock TJ (2008) A specialized citric acid cycle requiring succinyl-coenzyme A (CoA): acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J Bacteriol 190:4933–4940CrossRefPubMedPubMedCentralGoogle Scholar
  26. Okamoto-Kainuma A, Yan W, Fukaya M, Tukamoto Y, Ishikawa M, Koizumi Y (2004) Cloning and characterization of the dnaKJ operon in Acetobacter aceti. J Biosci Bioeng 97:339–342CrossRefPubMedGoogle Scholar
  27. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200CrossRefPubMedGoogle Scholar
  28. Saeki A, Taniguchi M, Matsushita K, Toyama H, Theeragool G, Lotong N, Adachi O (1997) Microbiological aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation. Biosci Biotechnol Biochem 61:317–323CrossRefGoogle Scholar
  29. Saeki A, Matsushita K, Takeno S, Taniguchi M, Toyama H, Theeragool G, Lotong N, Adachi O (1999) Enzymes responsible for acetate oxidation by acetic acid bacteria. Biosci Biotechnol Biochem 63:2102–2109CrossRefGoogle Scholar
  30. Sakurai K, Arai H, Ishii M, Igarashi Y (2011) Transcriptome response to different carbon sources in Acetobacter aceti. Microbiology 157:899–910CrossRefPubMedGoogle Scholar
  31. Sakurai K, Arai H, Ishii M, Igarashi Y (2012) Changes in the gene expression profile of Acetobacter aceti during growth on ethanol. J Biosci Bioeng 113:343–348CrossRefPubMedGoogle Scholar
  32. Sakurai K, Yamazaki S, Ishii M, Igarashi Y, Arai H (2013) Role of the glyoxylate pathway in acetic acid production by Acetobacter aceti. J Biosci Bioeng 115:32–36CrossRefPubMedGoogle Scholar
  33. Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86:1257–1265CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Biotechnology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations