Advertisement

THz Spectroscopy

  • Kaori Fukunaga
Chapter
Part of the Cultural Heritage Science book series (CUHESC)

Abstract

The frequency band below the mid-infrared region was studied actively in the 1960s and 1970s during the development of FTIR spectroscopy. While researchers explored the use of this “far-infrared” region for spectroscopy at that time, only the mid-infrared region has become commonly used in FTIR methods. Spectra of typical art materials, such as pigments and binders, are introduced, and factors which affect the spectra are discussed.

Keywords

Terahertz spectroscopy Fourier transform spectroscopy Spectra database Pigment Binder Spectroscopic imaging 

References

  1. 1.
    R.S. McDonald, P.A. Wilks Jr., Appl. Spectrosc. 42, 151 (1998)CrossRefGoogle Scholar
  2. 2.
    Infrared Raman Users’ Group website, http://www.irug.org/
  3. 3.
    B.A. Price, B. Pretzel, S.Q. Lomax, C. Davis, J.H. Carlson, Revised JCAMP-DX spectral file format for submissions to the infrared Raman Users Group (IRUG) spectral database, available from [2]Google Scholar
  4. 4.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1997)Google Scholar
  5. 5.
    C. Karr Jr., J.J. Kovach, Far-infrared spectroscopy of minerals and inorganics. Appl. Spectrosc. 23, 219–223 (1969)CrossRefGoogle Scholar
  6. 6.
    H.D. Riccius, K.J. Siemsen, Infrared lattice bands of trigonal and cubic mercury sulfide. J. Chem. Phys. 52, 4090–4093 (1969)CrossRefGoogle Scholar
  7. 7.
    R.A. Nyquist, R.O. Kagel, Infrared Spectra of Inorganic Compounds (3800-45 cm −1 ) (Academic, New York, 1971)Google Scholar
  8. 8.
    F. Pavanello, F. Garet, M.-B. Kuppam, E. Peytavit, M. Vanwolleghem, F. Vaurette, J.-L. Coutaz, J.-F. Lampin, Broadband ultra-low-loss mesh filters on flexible cyclic olefin copolymer films for terahertz applications. Appl. Phys. Lett. 102, 111114 (2013)CrossRefGoogle Scholar
  9. 9.
    Y. Kishi, M. Nagai, J.C. Young, K. Takano, M. Hangyo, T. Suzuki, Terahertz laminated-structure polarizer with high extinction ratio and transmission power. Appl. Phys. Express 8, 032201 (2015)CrossRefGoogle Scholar
  10. 10.
    K. Liu, M.G. Brown, J.D. Cruzan, R. Saykally, Terahertz laser spectroscopy of the water pentamer: structure and hydrogen bond rearrangement dynamics. J. Phys. Chem. A 101, 9011–9021 (1997)CrossRefGoogle Scholar
  11. 11.
    C.A. Schmuttenmaer, Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem. Rev. 104, 1759–1779 (2004)CrossRefGoogle Scholar
  12. 12.
    H. Yada, M. Nagai, K. Tanaka, Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 464, 166–170 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Takahashi, Terahertz vibrations and hydrogen-bonded networks in crystals. Crystals 4, 74–103 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Ohki, M. Okada, N. Fuse, K. Iwai, M. Mizuno, K. Fukunaga, Terahertz time-domain spectroscopic analysis of molecular behavior in polyamide nanocomposites. Appl. Phys. Express 1, 122401 (2008)CrossRefGoogle Scholar
  15. 15.
    A. Bandyopadhyay, A. Sengupta, R.B. Barat, D.E. Gary, J.F. Federici, M. Chen, D.B. Tanner, Effects of scattering on THz spectra of granular solids. Int. J. Infrared Milli. Waves 28, 969–978 (2007)CrossRefGoogle Scholar
  16. 16.
    C.J. Strachan, T. Rades, D.A. Newnham, K.C. Gordon, M. Pepper, P.F. Taday, Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials. Chem. Phys. Lett. 390, 20–24 (2004)CrossRefGoogle Scholar
  17. 17.
    K. Fukunaga, M. Picollo, Terahertz spectroscopy applied to the analysis of artists’ materials. Appl. Phys. A 100, 591–597 (2010)CrossRefGoogle Scholar
  18. 18.
    J.-M. Manceau, A. Nevin, C. Fotakis, S. Tzortzakis, Terahertz time domain spectroscopy for the analysis of cultural heritage related materials. Appl. Phys. B Lasers Opt. 90, 365–368 (2008)CrossRefGoogle Scholar
  19. 19.
    K. Fukunaga, Y. Ogawa, S. Hayashi, I. Hosako, Application of terahertz spectroscopy for character recognition in a medieval manuscript. IEICE Electron. Expr. 5, 223–228 (2008)CrossRefGoogle Scholar
  20. 20.
    E. Abraham, A. Younus, A. El Fatimy, J.C. Delagnes, E. Nguéma, P. Mounaix, Broadband terahertz imaging of documents written with lead pencils. Opt. Commun. 282, 3104–3107 (2009)CrossRefGoogle Scholar
  21. 21.
    J. Labaune, J.B. Jackson, S. Pagès-camagna, G.A. Mourou, I.N. Duling, M. Menu, Papyrus imaging with terahertz time domain spectroscopy. Appl. Phys. A. 100, 607–612 (2010)CrossRefGoogle Scholar
  22. 22.
    T. Bardon, R.K. May, P.F. Taday, M. Strlic, Systematic study of terahertz time-domain spectra of historically informed black inks. Analyst 138, 4859–4869 (2013)CrossRefGoogle Scholar
  23. 23.
    R. Radpour, N. Bajwa, J. Garritano, S. Sung, M. Balonis-Sant, P. Tewari, W. Grundfest, I. Kakoulli, Z. Taylor, THz pulsed TDI studies of painted samples to guide cultural heritage investigations at the Enkleistra of St. Neophytos in Paphos, Cypris. Proc. SPIE. 9199(91990Q) (2014)Google Scholar
  24. 24.
    M. Naftaly, J.F. Molloy, G.V. Lanskii, K.A. Kokh, Y.M. Andreev, Terahertz time-domain spectroscopy for textile identification. Appl. Optics 52, 4433–4437 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Kaori Fukunaga
    • 1
  1. 1.National Institute of Information and Communications TechnologyTokyoJapan

Personalised recommendations