Advertisement

Adaptive Leader-Follower Formation in Cluttered Environment Using Dynamic Target Reconfiguration

  • José Vilca
  • Lounis Adouane
  • Youcef Mezouar
Conference paper
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 112)

Abstract

This paper presents a control architecture for safe and smooth navigation of a group of Unmanned Ground Vehicles (UGV) while keeping a specific formation. The formation control is based on Leader-follower and Behavioral approaches. The proposed control architecture is designed to allow the use of a single control law for different multi-vehicle contexts (navigation in formation, transition between different formation shapes, obstacle avoidance, etc.). The obstacle avoidance strategy is based on the limit-cycle approach while taking into account the dimension of the formation. A new Strategy for Formation Reconfiguration (SFR) of the group of UGVs based on suitable smooth switching of the set-points (according, for instance, to the encountered obstacles or the new task to achieve) is proposed. The inter-vehicles collisions are avoided during the SFR using a penalty function acting on the vehicle velocities. Different simulations on cluttered environments show the performance and the efficiency of the proposal, to obtain fully reactive and distributed control strategy for the navigation in formation of a group of UGVs.

Keywords

Cooperative robots Autonomous navigation Formation control Dynamic formation Target-reaching control 

Notes

Acknowledgments

This work was supported by the French National Research Agency through the Safeplatoon project.

References

  1. 1.
    Adouane, L., Benzerrouk, A., Martinet, P.: Mobile robot navigation in cluttered environment using reactive elliptic trajectories. In: 18th IFAC World Congress (2011)Google Scholar
  2. 2.
    Benzerrouk, A., Adouane, L., Martinet, P.: Altruistic distributed target allocation for stable navigation in formation of multi-robot system. In: 10th International IFAC Symposium on Robot Control (SYROCO’12), Dubrovnik, Croatia (2012)Google Scholar
  3. 3.
    Chaimowicz, L., Kumar, R.V., Campos, M.F.M.: A mechanism for dynamic coordination of multiple robots. Auton. Robot. 17, 7–21 (2004)CrossRefGoogle Scholar
  4. 4.
    Chao, Z., Zhou, S.L., Ming, L., Zhang, W.G.: UAV formation flight based on nonlinear model predictive control. Math. Prob. Eng. 2012, 1–15 (2012)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, X., Li, Y.: Smooth formation navigation of multiple mobile robots for avoiding moving obstacles. Int. J. Control Autom. 4(4), 466–479 (2006)Google Scholar
  6. 6.
    Clark, J., Fierro, R.: Mobile robotic sensors for perimeter detection and tracking. ISA Trans. 46(1), 3–13 (2007)CrossRefGoogle Scholar
  7. 7.
    Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica 44(5), 1343–1349 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J., Taylor, C.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)CrossRefGoogle Scholar
  9. 9.
    Dasgupta, P., Whipple, T., Cheng, K.: Effects of multi-robot team formations on distributed area coverage. Int. J. Swarm Intell. Res. 2(1), 44–69 (2011)CrossRefGoogle Scholar
  10. 10.
    Desai, J., Ostrowski, J., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)CrossRefGoogle Scholar
  11. 11.
    El-Zaher, M., Contet, J.M., Gechter, F., Koukam, A.: Echelon platoon organisation: a distributed approach based on 2-spring virtual links. In: 15th International Conference on Artificial Intelligence: methodology, Systems, Applications (AIMSA), Germany (2012)Google Scholar
  12. 12.
    Ghommam, J., Mehrjerdi, H., Saad, M., Mnif, F.: Formation path following control of unicycle-type mobile robots. Robot. Auton. Syst. 58(5), 727–736 (2010)CrossRefGoogle Scholar
  13. 13.
    The Institut Pascal Data Sets.: http://ipds.univ-bpclermont.fr (2013)
  14. 14.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5, 90–99 (1986)CrossRefGoogle Scholar
  15. 15.
    Levinson, J., Thrun, S.: Robust vehicle localization in urban environments using probabilistic maps. In: IEEE International Conference on Robotics and Automation, Alaska, USA (2010)Google Scholar
  16. 16.
    Lozenguez, G., Adouane, L., Beynier, A., Mouaddib, A., Martinet, P.: Map partitioning to approximate an exploration strategy in mobile robotics. In: MAGS—Multiagent and Grid Systems (2012)Google Scholar
  17. 17.
    Luca, A.D., Oriolo, G., Samson, C.: Feedback control of a nonholonomic car-like robot. In: J.P. Laumond (ed.) Robot Motion Planning and Control, pp. 171–253. Springer-Verlag (1998)Google Scholar
  18. 18.
    Mesbahi, M., Hadaegh, F.: Formation flying control of multiple spacecraft via graphs, matrix inequalities, and switching. In: Proceedings of the 1999 IEEE International Conference on Control Applications, vol. 2, pp. 1211–1216 (1999)Google Scholar
  19. 19.
    Miner, D.: Swarm Robotics Algorithms: A Survey (2007)Google Scholar
  20. 20.
    Shames, I., Deghat, M., Anderson, B.: Safe formation control with obstacle avoidance. In: IFAC World Congress, Milan, Italy (2011)Google Scholar
  21. 21.
    Sinha, A., Ghose, D.: Generalization of linear cyclic pursuit with application to rendezvous of multiple autonomous agents. IEEE Trans. Autom. Control 51, 1819–1824 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tang, H., Song, A., Zhang, X.: Hybrid behavior coordination mechanism for navigation of reconnaissance robot. In: International Conference on Intelligent Robots and Systems (2006)Google Scholar
  23. 23.
    Vilca, J., Adouane, L., Mezouar, Y., Lébraly, P.: An overall control strategy based on target reaching for the navigation of an urban electric vehicle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’13), Tokyo, Japan (2013)Google Scholar
  24. 24.
    Zapata, R., Cacitti, A., Lepinay, P.: Dvz-based collision avoidance control of non-holonomic mobile manipulators. JESA, Eur. J. Autom. Syst. 38(5), 559–588 (2004)Google Scholar
  25. 25.
    Ze-su, C., Jie, Z., Jian, C.: Formation control and obstacle avoidance for multiple robots subject to wheel-slip. Int. J. Adv. Rob. Syst. 9, 1–15 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Institut PascalBlaise Pascal University—UMR CNRSClermont-FerrandFrance

Personalised recommendations