Parametric Amplifier and Oscillator Based on Josephson Junction Circuitry

Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

While the demand for low-noise amplification is ubiquitous, applications where the quantum-limited noise performance is indispensable are not very common. Microwave parametric amplifiers with near quantum-limited noise performance were first demonstrated more than 20 years ago. However, there had been little effort until recently to improve the performance or the ease of use of these amplifiers, partly because of a lack of any urgent motivation. The emergence of the field of quantum information processing in superconducting systems has changed this situation dramatically. The need to reliably read out the state of a given qubit using a very weak microwave probe within a very short time has led to renewed interest in these quantum-limited microwave amplifiers, which are already widely used as tools in this field. Here, we describe the quantum mechanical theory for one particular parametric amplifier design, called the flux-driven Josephson parametric amplifier, which we developed in 2008. The theory predicts the performance of this parametric amplifier, including its gain, bandwidth, and noise temperature. We also present the phase detection capability of this amplifier when it is operated with a pump power that is above the threshold, i.e., as a parametric phase-locked oscillator or parametron.

Keywords

Superconducting qubits Dispersive readout Parametric amplifier Parametric oscillator 

References

  1. 1.
    H. Takahashi, in Advances in Communication Systems, ed. by A.V. Balakrishnan (Academic, New York, 1965), p. 227Google Scholar
  2. 2.
    C.M. Caves, Phys. Rev. D 26, 1817 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    A. Barone, G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982), chap. 11CrossRefGoogle Scholar
  4. 4.
    B. Yurke, P.G. Kaminsky, R.E. Miller, E.A. Whittaker, A.D. Smith, A.H. Silver, R.W. Simon, Phys. Rev. Lett. 60, 764 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    B. Yurke, L.R. Corruccini, P.G. Kaminsky, L.W. Rupp, A.D. Smith, A.H. Silver, R.W. Simon, E.A. Whittaker, Phys. Rev. A 39, 2519 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    R. Movshovich, B. Yurke, P.G. Kaminsky, A.D. Smith, A.H. Silver, R.W. Simon, M.V. Schneider, Phys. Rev. Lett. 65, 1419 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Nature 398, 786 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    A. Blais, R.S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 69, 062320 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    E.A. Tholén, A. Ergül, E.M. Doherty, F.M. Weber, F. Grégis, D.B. Haviland, Appl. Phys. Lett. 90, 253509 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Castellanos-Beltran, K.W. Lehnert, Appl. Phys. Lett. 91, 083509 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W.D. Oliver, Y. Nakamura, J.S. Tsai, Appl. Phys. Lett. 93, 042510 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    N. Bergeal, R. Vijay, V.E. Manucharyan, I. Siddiqi, R.J. Schoelkopf, S.M. Girvin, M.H. Devoret, Nat. Phys. 6, 296 (2010)CrossRefGoogle Scholar
  13. 13.
    M.A. Castellanos-Beltran, K.D. Irwin, G.C. Hilton, L.R. Vale, K.W. Lehnert, Nat. Phys. 4, 928 (2008)CrossRefGoogle Scholar
  14. 14.
    J.D. Teufel, T. Donner, M.A. Castellanos-Beltran, J.W. Harlow, K.W. Lehnert, Nat. Nanotech. 4, 820 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    R. Vijay, D.H. Slichter, I. Siddiqi, Phys. Rev. Lett. 106, 110502 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431, 162 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    F. Mallet, M.A. Castellanos-Beltran, H.S. Ku, S. Glancy, E. Knill, K.D. Irwin, G.C. Hilton, L.R. Vale, K.W. Lehnert, Phys. Rev. Lett. 106, 220502 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    C. Eichler, D. Bozyigit, C. Lang, M. Baur, L. Steffen, J.M. Fink, S. Filipp, A. Wallraff, Phys. Rev. Lett. 107, 113601 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    E. Flurin, N. Roch, F. Mallet, M.H. Devoret, B. Huard, Phys. Rev. Lett. 109, 183901 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    E.P. Menzel, R. Di Candia, F. Deppe, P. Eder, L. Zhong, M. Ihmig, M. Haeberlein, A. Baust, E. Hoffmann, D. Ballester, K. Inomata, T. Yamamoto, Y. Nakamura, E. Solano, A. Marx, R. Gross, Phys. Rev. Lett. 109, 250502 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley-Interscience, New York, 1995)CrossRefGoogle Scholar
  22. 22.
    C.M. Wilson, T. Duty, M. Sandberg, F. Persson, V. Shumeiko, P. Delsing, Phys. Rev. Lett. 105, 233907 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    C.W. Wilson, T. Duty, P. Delsing, in Fluctuating Nonlinear Oscillators: From Nanomechanics to Quantum Superconducting Circuits, ed. by M. Dykman (Oxford University Press, Oxford, 2012), chap. 15Google Scholar
  24. 24.
    C.M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Nature 376, 479 (2011)Google Scholar
  25. 25.
    E. Goto, Proc. Inst. Radio Eng. 47, 1304 (1959)Google Scholar
  26. 26.
    L.S. Onyshkevych, W.F. Kosonocky, A.W. Lo, Trans. Inst. Radio Engrs. EC-8, 277 (1959)Google Scholar
  27. 27.
    Z.R. Lin, K. Inomata, K. Koshino, W.D. Oliver, Y. Nakamura, J.S. Tsai, T. Yamamoto, Nat. Commun. 5, 4480 (2014)ADSGoogle Scholar
  28. 28.
    D.F. Walls, G.J. Milburn, Quantum Optics (Springer, Berlin/Tokyo, 1994)CrossRefMATHGoogle Scholar
  29. 29.
    M. Wallquist, V.S. Shumeiko, G. Wendin, Phys. Rev. B 74, 224506 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    T. Ojanen, J. Salo, Phys. Rev. B 75, 184508 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    M. Hatridge, R. Vijay, D.H. Slichter, J. Clarke, I. Siddiqi, Phys. Rev. B 83, 134501 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    J.Y. Mutus, T.C. White, E. Jeffrey, D. Sank, R. Barends, J. Bochmann, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, J. Kelly, A. Megrant, C. Neill, P.J.J. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, I. Siddiqi, R. Vijay, A.N. Cleland, J.M. Martinis, Appl. Phys. Lett. 103, 122602 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    E. Jeffrey, D. Sank, J.Y. Mutus, T.C. White, J. Kelly, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Megrant, P.J.J. O’Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A.N. Cleland, J.M. Martinis, Phys. Rev. Lett. 112, 190504 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Z.R. Lin, K. Inomata, W.D. Oliver, K. Koshino, Y. Nakamura, J.S. Tsai, T. Yamamoto, Appl. Phys. Lett. 103, 132602 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    L. Zhong, E.P. Menzel, R.D. Candia, P. Eder, M. Ihmig, A. Baust, M. Haeberlein, E. Hoffmann, K. Inomata, T. Yamamoto, Y. Nakamura, E. Solano, F. Deppe, A. Marx, R. Gross, New J. Phys. 15, 125013 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    B. Abdo, A. Kamal, M. Devoret, Phys. Rev. B 87, 014508 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    B. Yurke, in Quantum Squeezing, ed. by P.D. Drummond, Z. Ficek (Springer, Berlin/New York, 2004)Google Scholar
  38. 38.
    B. Yurke, E. Buks, J. Lightwave Tech. 24, 5054 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    J. Johansson, P. Nation, F. Nori, Comput. Phys. Commun. 184, 1234 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    K. Beer, Radio Electron. Eng. 25, 432 (1963)CrossRefGoogle Scholar
  41. 41.
    R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T.C. White, J. Mutus, A.G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A.N. Korotkov, A.N. Cleland, J.M. Martinis, Nature 508, 500 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    B.H. Eom, P.K. Day, H.G. LeDuc, J. Zmuidzinas, Nat. Phys. 8, 623 (2012)CrossRefGoogle Scholar
  43. 43.
    O. Yaakobi, L. Friedland, C. Macklin, I. Siddiqi, Phys. Rev. B 87, 144301 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    B. Abdo, K. Sliwa, L. Frunzio, M. Devoret, Phys. Rev. X 3, 031001 (2013)Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.NEC Smart Energy Research LaboratoriesTsukubaJapan
  2. 2.College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
  3. 3.Research Center for Advanced Science and Technology (RCAST)The University of TokyoTokyoJapan
  4. 4.RIKEN Center for Emergent Matter Science (CEMS)WakoJapan

Personalised recommendations