Advertisement

Genetics of Systemic Sclerosis

  • Naoyuki Tsuchiya
  • Aya Kawasaki
Chapter

Abstract

Genetic epidemiology suggests that the molecular background of systemic sclerosis (SSc) such as autoantibody production or gene expression profiles may be highly hereditary; however, the clinical occurrence of SSc may require non-hereditary factor(s). Genome-wide association studies (GWASs) confirmed that the HLA genes are the strongest genetic factors, although specific risk alleles are different among populations and among the clinical subsets such as those determined by autoantibody profiles. GWAS and candidate gene studies revealed more than a dozen of convincing candidate genes; however, thus far, all of them are shared by other diseases and do not appear to explain the unique features of SSc such as extensive fibrosis and vascular damage. Thus, something must be missing, and more studies are required to reveal the secrets of this enigmatic disease. Here, we reviewed the genetic studies of SSc, with emphasis on those performed on Asian populations.

Keywords

Systemic sclerosis Genetics HLA Genome-wide association study SNP 

References

  1. 1.
    Arnett FC, Cho M, Chatterjee S, Aguilar MB, Reveille JD, Mayes MD. Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma) in three United States cohorts. Arthritis Rheum. 2001;44(6):1359–62.CrossRefPubMedGoogle Scholar
  2. 2.
    Feghali-Bostwick C, Medsger Jr TA, Wright TM. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum. 2003;48(7):1956–63. doi: 10.1002/art.11173.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhou X, Tan FK, Xiong M, Arnett FC, Feghali-Bostwick CA. Monozygotic twins clinically discordant for scleroderma show concordance for fibroblast gene expression profiles. Arthritis Rheum. 2005;52(10):3305–14. doi: 10.1002/art.21355.CrossRefPubMedGoogle Scholar
  4. 4.
    Tager RE, Tikly M. Clinical and laboratory manifestations of systemic sclerosis (scleroderma) in Black South Africans. Rheumatology. 1999;38(5):397–400.CrossRefPubMedGoogle Scholar
  5. 5.
    Mayes MD, Lacey Jr JV, Beebe-Dimmer J, Gillespie BW, Cooper B, Laing TJ, et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum. 2003;48(8):2246–55. doi: 10.1002/art.11073.CrossRefPubMedGoogle Scholar
  6. 6.
    McNeilage LJ, Youngchaiyud U, Whittingham S. Racial differences in antinuclear antibody patterns and clinical manifestations of scleroderma. Arthritis Rheum. 1989;32(1):54–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Kuwana M, Inoko H, Kameda H, Nojima T, Sato S, Nakamura K, et al. Association of human leukocyte antigen class II genes with autoantibody profiles, but not with disease susceptibility in Japanese patients with systemic sclerosis. Intern Med. 1999;38(4):336–44.CrossRefPubMedGoogle Scholar
  8. 8.
    Kuwana M, Kaburaki J, Arnett FC, Howard RF, Medsger Jr TA, Wright TM. Influence of ethnic background on clinical and serologic features in patients with systemic sclerosis and anti-DNA topoisomerase I antibody. Arthritis Rheum. 1999;42(3):465–74.CrossRefPubMedGoogle Scholar
  9. 9.
    Kuwana M, Kaburaki J, Okano Y, Inoko H, Tsuji K. The HLA-DR and DQ genes control the autoimmune response to DNA topoisomerase I in systemic sclerosis (scleroderma). J Clin Invest. 1993;92(3):1296–301. doi: 10.1172/JCI116703.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Odani T, Yasuda S, Ota Y, Fujieda Y, Kon Y, Horita T, et al. Up-regulated expression of HLA-DRB5 transcripts and high frequency of the HLA-DRB5*01:05 allele in scleroderma patients with interstitial lung disease. Rheumatology. 2012;51(10):1765–74. doi: 10.1093/rheumatology/kes149.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhou X, Lee JE, Arnett FC, Xiong M, Park MY, Yoo YK, et al. HLA-DPB1 and DPB2 are genetic loci for systemic sclerosis: a genome-wide association study in Koreans with replication in North Americans. Arthritis Rheum. 2009;60(12):3807–14. doi: 10.1002/art.24982.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Kang SH, Park MH, Song EY, Kang SJ, Lee EB, Song YW, et al. Association of HLA class II genes with systemic sclerosis in Koreans. J Rheumatol. 2001;28(7):1577–83.PubMedGoogle Scholar
  13. 13.
    Wang J, Guo X, Yi L, Guo G, Tu W, Wu W, et al. Association of HLA-DPB1 with scleroderma and its clinical features in Chinese population. PLoS One. 2014;9(1):e87363. doi: 10.1371/journal.pone.0087363.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    He D, Wang J, Yi L, Guo X, Guo S, Guo G, et al. Association of the HLA-DRB1 with scleroderma in Chinese population. PLoS One. 2014;9(9):e106939. doi: 10.1371/journal.pone.0106939.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Arnett FC, Gourh P, Shete S, Ahn CW, Honey RE, Agarwal SK, et al. Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls. Ann Rheum Dis. 2010;69(5):822–7. doi: 10.1136/ard.2009.111906.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Loubiere LS, Lambert NC, Madeleine MM, Porter AJ, Mullarkey ME, Pang JM, et al. HLA allelic variants encoding DR11 in diffuse and limited systemic sclerosis in Caucasian women. Rheumatology. 2005;44(3):318–22. doi: 10.1093/rheumatology/keh489.CrossRefPubMedGoogle Scholar
  17. 17.
    Mayes MD, Bossini-Castillo L, Gorlova O, Martin JE, Zhou X, Chen WV, et al. Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am J Hum Genet. 2014;94(1):47–61. doi: 10.1016/j.ajhg.2013.12.002.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Azzouz DF, Rak JM, Fajardy I, Allanore Y, Tiev KP, Farge-Bancel D, et al. Comparing HLA shared epitopes in French Caucasian patients with scleroderma. PLoS One. 2012;7(5):e36870. doi: 10.1371/journal.pone.0036870.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Grigolo B, Mazzetti I, Meliconi R, Bazzi S, Scorza R, Candela M, et al. Anti-topoisomerase II alpha autoantibodies in systemic sclerosis-association with pulmonary hypertension and HLA-B35. Clin Exp Immunol. 2000;121(3):539–43.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Beretta L, Rueda B, Marchini M, Santaniello A, Simeon CP, Fonollosa V, et al. Analysis of Class II human leucocyte antigens in Italian and Spanish systemic sclerosis. Rheumatology. 2012;51(1):52–9. doi: 10.1093/rheumatology/ker335.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Tikly M, Rands A, McHugh N, Wordsworth P, Welsh K. Human leukocyte antigen class II associations with systemic sclerosis in South Africans. Tissue Antigens. 2004;63(5):487–90. doi: 10.1111/j.0001-2815.2004.00199.x.CrossRefPubMedGoogle Scholar
  22. 22.
    Nguyen B, Mayes MD, Arnett FC, del Junco D, Reveille JD, Gonzalez EB, et al. HLA-DRB1*0407 and *1304 are risk factors for scleroderma renal crisis. Arthritis Rheum. 2011;63(2):530–4. doi: 10.1002/art.30111.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Kuwana M, Okano Y, Kaburaki J, Inoko H. HLA class II genes associated with anticentromere antibody in Japanese patients with systemic sclerosis (scleroderma). Ann Rheum Dis. 1995;54(12):983–7.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Kuwana M, Okano Y, Kaburaki J, Tojo T, Medsger Jr TA. Racial differences in the distribution of systemic sclerosis-related serum antinuclear antibodies. Arthritis Rheum. 1994;37(6):902–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Kuwana M, Kaburaki J, Mimori T, Tojo T, Homma M. Autoantigenic epitopes on DNA topoisomerase I. Clinical and immunogenetic associations in systemic sclerosis. Arthritis Rheum. 1993;36(10):1406–13.CrossRefPubMedGoogle Scholar
  26. 26.
    Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D1001–6. doi: 10.1093/nar/gkt1229.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Radstake TR, Gorlova O, Rueda B, Martin JE, Alizadeh BZ, Palomino-Morales R, et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat Genet. 2010;42(5):426–9. doi: 10.1038/ng.565.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Allanore Y, Saad M, Dieude P, Avouac J, Distler JH, Amouyel P, et al. Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet. 2011;7(7):e1002091. doi: 10.1371/journal.pgen.1002091.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Gorlova O, Martin JE, Rueda B, Koeleman BP, Ying J, Teruel M, et al. Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet. 2011;7(7):e1002178. doi: 10.1371/journal.pgen.1002178.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Martin JE, Assassi S, Diaz-Gallo LM, Broen JC, Simeon CP, Castellvi I, et al. A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci. Hum Mol Genet. 2013;22(19):4021–9. doi: 10.1093/hmg/ddt248.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Martin JE, Broen JC, Carmona FD, Teruel M, Simeon CP, Vonk MC, et al. Identification of CSK as a systemic sclerosis genetic risk factor through Genome Wide Association Study follow-up. Hum Mol Genet. 2012;21(12):2825–35. doi: 10.1093/hmg/dds099.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Lopez-Isac E, Bossini-Castillo L, Guerra SG, Denton C, Fonseca C, Assassi S, et al. Identification of IL12RB1 as a novel systemic sclerosis susceptibility locus. Arthritis Rheumatol. 2014;66(12):3521–3. doi: 10.1002/art.38870.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Bossini-Castillo L, Martin JE, Broen J, Gorlova O, Simeon CP, Beretta L, et al. A GWAS follow-up study reveals the association of the IL12RB2 gene with systemic sclerosis in Caucasian populations. Hum Mol Genet. 2012;21(4):926–33. doi: 10.1093/hmg/ddr522.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Ito I, Kawaguchi Y, Kawasaki A, Hasegawa M, Ohashi J, Hikami K, et al. Association of a functional polymorphism in the IRF5 region with systemic sclerosis in a Japanese population. Arthritis Rheum. 2009;60(6):1845–50. doi: 10.1002/art.24600.CrossRefPubMedGoogle Scholar
  35. 35.
    Terao C, Ohmura K, Kawaguchi Y, Nishimoto T, Kawasaki A, Takehara K, et al. PLD4 as a novel susceptibility gene for systemic sclerosis in a Japanese population. Arthritis Rheum. 2013;65(2):472–80. doi: 10.1002/art.37777.CrossRefPubMedGoogle Scholar
  36. 36.
    Tsuchiya N, Kawasaki A, Hasegawa M, Fujimoto M, Takehara K, Kawaguchi Y, et al. Association of STAT4 polymorphism with systemic sclerosis in a Japanese population. Ann Rheum Dis. 2009;68(8):1375–6. doi: 10.1136/ard.2009.111310.CrossRefPubMedGoogle Scholar
  37. 37.
    Koumakis E, Giraud M, Dieude P, Cohignac V, Cuomo G, Airo P, et al. Brief report: candidate gene study in systemic sclerosis identifies a rare and functional variant of the TNFAIP3 locus as a risk factor for polyautoimmunity. Arthritis Rheum. 2012;64(8):2746–52. doi: 10.1002/art.34490.CrossRefPubMedGoogle Scholar
  38. 38.
    Dieude P, Guedj M, Wipff J, Ruiz B, Riemekasten G, Matucci-Cerinic M, et al. Association of the TNFAIP3 rs5029939 variant with systemic sclerosis in the European Caucasian population. Ann Rheum Dis. 2010;69(11):1958–64. doi: 10.1136/ard.2009.127928.CrossRefPubMedGoogle Scholar
  39. 39.
    Coustet B, Bouaziz M, Dieude P, Guedj M, Bossini-Castillo L, Agarwal S, et al. Independent replication and meta analysis of association studies establish TNFSF4 as a susceptibility gene preferentially associated with the subset of anticentromere-positive patients with systemic sclerosis. J Rheumatol. 2012;39(5):997–1003. doi: 10.3899/jrheum.111270.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Bossini-Castillo L, Broen JC, Simeon CP, Beretta L, Vonk MC, Ortego-Centeno N, et al. A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort. Ann Rheum Dis. 2011;70(4):638–41. doi: 10.1136/ard.2010.141838.CrossRefPubMedGoogle Scholar
  41. 41.
    Rueda B, Gourh P, Broen J, Agarwal SK, Simeon C, Ortego-Centeno N, et al. BANK1 functional variants are associated with susceptibility to diffuse systemic sclerosis in Caucasians. Ann Rheum Dis. 2010;69(4):700–5. doi: 10.1136/ard.2009.118174.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Dieude P, Wipff J, Guedj M, Ruiz B, Melchers I, Hachulla E, et al. BANK1 is a genetic risk factor for diffuse cutaneous systemic sclerosis and has additive effects with IRF5 and STAT4. Arthritis Rheum. 2009;60(11):3447–54. doi: 10.1002/art.24885.CrossRefPubMedGoogle Scholar
  43. 43.
    Ito I, Kawaguchi Y, Kawasaki A, Hasegawa M, Ohashi J, Kawamoto M, et al. Association of the FAM167A-BLK region with systemic sclerosis. Arthritis Rheum. 2010;62(3):890–5. doi: 10.1002/art.27303.CrossRefPubMedGoogle Scholar
  44. 44.
    Gourh P, Agarwal SK, Martin E, Divecha D, Rueda B, Bunting H, et al. Association of the C8orf13-BLK region with systemic sclerosis in North-American and European populations. J Autoimmun. 2010;34(2):155–62. doi: 10.1016/j.jaut.2009.08.014.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Hoshino K, Satoh T, Kawaguchi Y, Kuwana M. Association of hepatocyte growth factor promoter polymorphism with severity of interstitial lung disease in Japanese patients with systemic sclerosis. Arthritis Rheum. 2011;63(8):2465–72. doi: 10.1002/art.30415.CrossRefPubMedGoogle Scholar
  46. 46.
    Tsuchiya N, Kuroki K, Fujimoto M, Murakami Y, Tedder TF, Tokunaga K, et al. Association of a functional CD19 polymorphism with susceptibility to systemic sclerosis. Arthritis Rheum. 2004;50(12):4002–7. doi: 10.1002/art.20674.CrossRefPubMedGoogle Scholar
  47. 47.
    Hitomi Y, Tsuchiya N, Hasegawa M, Fujimoto M, Takehara K, Tokunaga K, et al. Association of CD22 gene polymorphism with susceptibility to limited cutaneous systemic sclerosis. Tissue Antigens. 2007;69(3):242–9. doi: 10.1111/j.1399-0039.2007.00801.x.CrossRefPubMedGoogle Scholar
  48. 48.
    Fujimoto M, Sato S. B cell signaling and autoimmune diseases: CD19/CD22 loop as a B cell signaling device to regulate the balance of autoimmunity. J Dermatol Sci. 2007;46(1):1–9. doi: 10.1016/j.jdermsci.2006.12.004.CrossRefPubMedGoogle Scholar
  49. 49.
    Hikami K, Ehara Y, Hasegawa M, Fujimoto M, Matsushita M, Oka T, et al. Association of IL-10 receptor 2 (IL10RB) SNP with systemic sclerosis. Biochem Biophys Res Commun. 2008;373(3):403–7. doi: 10.1016/j.bbrc.2008.06.054.CrossRefPubMedGoogle Scholar
  50. 50.
    Hasebe N, Kawasaki A, Ito I, Kawamoto M, Hasegawa M, Fujimoto M, et al. Association of UBE2L3 polymorphisms with diffuse cutaneous systemic sclerosis in a Japanese population. Ann Rheum Dis. 2012;71(7):1259–60. doi: 10.1136/annrheumdis-2011-201091.CrossRefPubMedGoogle Scholar
  51. 51.
    Korman BD, Criswell LA. Recent advances in the genetics of systemic sclerosis: toward biological and clinical significance. Curr Rheumatol Rep. 2015;17(3):21. doi: 10.1007/s11926-014-0484-x.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Broen JC, Radstake TR, Rossato M. The role of genetics and epigenetics in the pathogenesis of systemic sclerosis. Nat Rev Rheumatol. 2014;10(11):671–81. doi: 10.1038/nrrheum.2014.128.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Molecular and Genetic Epidemiology Laboratory, Faculty of MedicineUniversity of TsukubaTsukubaJapan

Personalised recommendations