Advertisement

Plasmablasts: A Promising Biomarker in IgG4-Related Disease

  • Marco Lanzillotta
  • John H. StoneEmail author
  • Emanuel Della-Torre
Chapter

Abstract

Plasmablasts appear to play a central role in the pathophysiology of IgG4-related disease (IgG4-RD). These cells are CD19lowCD20-CD27+CD38bright on flow cytometry and their absolute numbers in patients with IgG4-RD are dramatically higher in those patients than in healthy controls. Plasmablasts likely contribute to the pathogenesis of IgG4-RD through a variety of ways: (1) autoantibody production; (2) myofibroblast activation; (3) profibrotic cytokine production; or, (4) antigen-presentation to putative pathogenic T cells. This chapter introduces the reader to the concept of plasmablasts, reviewing the origin and biology of these cells, the processes of somatic hypermutation, affinity maturation, and class-switch recombination. It also discusses the identification of plasmablasts by flow cytometry and reviews the evidence for these cells’ centrality in the B cell-T cell crosstalk that is crucial to IgG4-RD.

Keywords

Plasmablast Somatic hypermutation Affinity maturation Class switch recombination 

References

  1. 1.
    Kepler TB, Perelson AS. Cyclic re-entry of germinal center B cells and the efficiency of affinity maturation. Immunol Today. 1993;14(8):412–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8397781.
  2. 2.
    Allen CDC, Okada T, Cyster JG. Germinal-center organization and cellular dynamics. Immunity. 2007;27(2):190–202. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2242846&tool=pmcentrez&rendertype=abstract.
  3. 3.
    McHeyzer-Williams LJ, McHeyzer-Williams MG. Antigen-specific memory B cell development. Annu Rev Immunol. 2005;23:487–513. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15771579.
  4. 4.
    Hiepe F, Dörner T, Hauser AE, Hoyer BF, Mei H, Radbruch A. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol. 2011;7(3):170–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21283146.
  5. 5.
    Kaminski DA, Wei C, Qian Y, Rosenberg AF, Sanz I. Advances in human B cell phenotypic profiling. Front Immunol [Internet]. 2012 Jan [cited 2015 Jun 25];3:302. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3467643&tool=pmcentrez&rendertype=abstract
  6. 6.
    Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KGC, Dörner T, et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol. 2006;6(10):741–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16977339.
  7. 7.
    Harada Y, Kawano MM, Huang N, Mahmoud MS, Lisukov IA, Mihara K, et al. Identification of early plasma cells in peripheral blood and their clinical significance. Br J Haematol. 1996;92(1):184–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8562394.
  8. 8.
    Fink K. Origin and function of circulating plasmablasts during acute viral infections. Front Immunol. 2012;3:78. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3341968&tool=pmcentrez&rendertype=abstract.
  9. 9.
    Della-Torre E, Lanzillotta M, Doglioni C. Immunology of IgG4-related disease. Clin Exp Immunol. 2015. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25865251.
  10. 10.
    Vital EM, Dass S, Buch MH, Henshaw K, Pease CT, Martin MF, et al. B cell biomarkers of rituximab responses in systemic lupus erythematosus. Arthritis Rheum. 2011;63(10):3038–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21618204.
  11. 11.
    Wallace ZS, Mattoo H, Carruthers M, Mahajan VS, Della Torre E, Lee H, et al. Plasmablasts as a biomarker for IgG4-related disease, independent of serum IgG4 concentrations. Ann Rheum Dis [Internet]. 2014;1–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24817416
  12. 12.
    Greipp PR, Leong T, Bennett JM, Gaillard JP, Klein B, Stewart JA, et al. Plasmablastic morphology--an independent prognostic factor with clinical and laboratory correlates: Eastern Cooperative Oncology Group (ECOG) myeloma trial E9486 report by the ECOG Myeloma Laboratory Group. Blood. 1998;91(7):2501–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9516151.
  13. 13.
    Chavele K-M, Merry E, Ehrenstein MR. Cutting edge: circulating plasmablasts induce the differentiation of human T follicular helper cells via IL-6 production. J Immunol [Internet]. 2015 Feb 13 [cited 2015 Oct 12];194(6):2482–5. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4356730&tool=pmcentrez&rendertype=abstract
  14. 14.
    Engel P, Zhou LJ, Ord DC, Sato S, Koller B, Tedder TF. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity. 1995;3(1):39–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7542548.
  15. 15.
    Jego G, Bataille R, Pellat-Deceunynck C. Interleukin-6 is a growth factor for nonmalignant human plasmablasts. Blood. 2001;97(6):1817–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11238125.
  16. 16.
    Partida-Sánchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, Garvy B, et al. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med. 2001;7(11):1209–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11689885.
  17. 17.
    Borst J, Hendriks J, Xiao Y. CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol. 2005;17(3):275–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15886117.
  18. 18.
    Qian Y, Wei C, Eun-Hyung Lee F, Campbell J, Halliley J, Lee JA, et al. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin Cytom. 2010;78 Suppl 1:S69–82. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3084630&tool=pmcentrez&rendertype=abstract.
  19. 19.
    Yoshida T, Mei H, Dörner T, Hiepe F, Radbruch A, Fillatreau S, et al. Memory B and memory plasma cells. Immunol Rev. 2010;237(1):117–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20727033.
  20. 20.
    Perez-Andres M, Paiva B, Nieto WG, Caraux A, Schmitz A, Almeida J, et al. Human peripheral blood B-cell compartments: a crossroad in B-cell traffic. Cytometry B Clin Cytom. 2010;78 Suppl 1:S47–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20839338.
  21. 21.
    Yamamoto M, Takahashi H, Tabeya T, Suzuki C, Naishiro Y, Ishigami K, et al. Risk of malignancies in IgG4-related disease. Mod Rheumatol. 2012;22(3):414–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21894525.
  22. 22.
    Deshpande V, Zen Y, Chan JK, Yi EE, Sato Y, Yoshino T, et al. Consensus statement on the pathology of IgG4-related disease. Mod Pathol. 2012;25:1181–92.CrossRefPubMedGoogle Scholar
  23. 23.
    Mattoo H, Mahajan VS, Della-Torre E, Sekigami Y, Carruthers M, Wallace ZS, et al. De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. J Allergy Clin Immunol. 2014;134:679–87.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Iwata S, Saito K, Hirata S, Tanaka Y. Phenotypic changes of lymphocyte in a patient with IgG4-related disease after corticosteroid therapy. Ann Rheum Dis. 2012;71(12):2058–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22791745.

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Marco Lanzillotta
    • 2
  • John H. Stone
    • 1
    Email author
  • Emanuel Della-Torre
    • 2
  1. 1.Unit of Medicine and Clinical ImmunologyIRCCS San Raffaele Scientific InstituteMilanItaly
  2. 2.Rheumatology Clinic, Yawkey 2AMassachusetts General HospitalBostonUSA

Personalised recommendations