Regulation of pRB and p53 Pathways by the Long Noncoding RNAs ANRIL, lincRNA-p21, lincRNA-RoR, and PANDA

  • Yojiro KotakeEmail author
  • Masatoshi Kitagawa


Retinoblastoma protein (pRB) and p53 pathways play a key role in controlling the cell cycle and apoptosis in response to oncogenic insults and DNA damage. Disruption of these pathways deregulates the control of cell proliferation and represents a common event in the development of most types of human cancer. Recent studies have revealed that several long noncoding RNAs (lncRNAs) are involved in the regulation of pRB and p53 pathways, through transcriptional and translational control of target genes. In this chapter, we focus on four lncRNAs: ANRIL, lincRNA-p21, lincRNA-RoR, and PANDA. These lncRNAs are involved in the pRB and p53 pathways. ANRIL associates with and recruits polycomb proteins to repress the transcription of cyclin-dependent kinase (CDK) inhibitor p15 and p16 genes, resulting in the repression of pRB function. lincRNA-p21, lincRNA-RoR, and PANDA are induced by p53 in response to DNA damage and regulate apoptosis. We discuss the involvement of ANRIL, lincRNA-p21, lincRNA-RoR, and PANDA in cellular functions through the pRB and p53 pathways, and the molecular mechanisms by which these lncRNAs regulate the expression of target genes.


lncRNA ANRIL lincRNA-p21 PANDA lincRNA-RoR p53 pRB 


  1. Bishop DT, Demenais F, Iles MM, Harland M, Taylor JC, Corda E, Randerson-Moor J, Aitken JF, Avril MF, Azizi E, Bakker B, Bianchi-Scarra G, Bressac-de Paillerets B, Calista D, Cannon-Albright LA, Chin AWT, Debniak T, Galore-Haskel G, Ghiorzo P, Gut I, Hansson J, Hocevar M, Hoiom V, Hopper JL, Ingvar C, Kanetsky PA, Kefford RF, Landi MT, Lang J, Lubinski J, Mackie R, Malvehy J, Mann GJ, Martin NG, Montgomery GW, van Nieuwpoort FA, Novakovic S, Olsson H, Puig S, Weiss M, van Workum W, Zelenika D, Brown KM, Goldstein AM, Gillanders EM, Boland A, Galan P, Elder DE, Gruis NA, Hayward NK, Lathrop GM, Barrett JH, Bishop JA (2009) Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet 41(8):920–925, ng.411 [pii]  10.1038/ng.411 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K (2007) The polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21(5):525–530, 21/5/525 [pii]  10.1101/gad.415507 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, Clarke R, Collins R, Franzosi MG, Tognoni G, Seedorf U, Rust S, Eriksson P, Hamsten A, Farrall M, Watkins H (2008) Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet 17(6):806–814, ddm352 [pii]  10.1093/hmg/ddm352 PubMedCrossRefGoogle Scholar
  4. Brookes S, Rowe J, Ruas M, Llanos S, Clark PA, Lomax M, James MC, Vatcheva R, Bates S, Vousden KH, Parry D, Gruis N, Smit N, Bergman W, Peters G (2002) INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence. EMBO J 21(12):2936–2945. doi: 10.1093/emboj/cdf289 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233. doi: 10.1371/journal.pgen.1001233 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120(4):513–522, S0092-8674(05)00111-X [pii]  10.1016/j.cell.2005.02.003 PubMedCrossRefGoogle Scholar
  7. Cao R, Tsukada Y, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20(6):845–854, S1097-2765(05)01817-4 [pii]  10.1016/j.molcel.2005.12.002 PubMedCrossRefGoogle Scholar
  8. Congrains A, Kamide K, Katsuya T, Yasuda O, Oguro R, Yamamoto K, Ohishi M, Rakugi H (2012) CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochem Biophys Res Commun 419(4):612–616, S0006-291X(12)00283-5 [pii]  10.1016/j.bbrc.2012.02.050 PubMedCrossRefGoogle Scholar
  9. Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B (2010) Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet 6(4):e1000899. doi: 10.1371/journal.pgen.1000899 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Folkersen L, Kyriakou T, Goel A, Peden J, Malarstig A, Paulsson-Berne G, Hamsten A, Hugh W, Franco-Cereceda A, Gabrielsen A, Eriksson P (2009) Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS One 4(11):e7677. doi: 10.1371/journal.pone.0007677 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Gschwendtner A, Bevan S, Cole JW, Plourde A, Matarin M, Ross-Adams H, Meitinger T, Wichmann E, Mitchell BD, Furie K, Slowik A, Rich SS, Syme PD, MacLeod MJ, Meschia JF, Rosand J, Kittner SJ, Markus HS, Muller-Myhsok B, Dichgans M (2009) Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol 65(5):531–539. doi: 10.1002/ana.21590 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076, nature08975 [pii]  10.1038/nature08975 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Sigurdsson A, Baker A, Palsson A, Masson G, Gudbjartsson DF, Magnusson KP, Andersen K, Levey AI, Backman VM, Matthiasdottir S, Jonsdottir T, Palsson S, Einarsdottir H, Gunnarsdottir S, Gylfason A, Vaccarino V, Hooper WC, Reilly MP, Granger CB, Austin H, Rader DJ, Shah SH, Quyyumi AA, Gulcher JR, Thorgeirsson G, Thorsteinsdottir U, Kong A, Stefansson K (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316(5830):1491–1493, 1142842 [pii]  10.1126/science.1142842 PubMedCrossRefGoogle Scholar
  14. Holdt LM, Beutner F, Scholz M, Gielen S, Gabel G, Bergert H, Schuler G, Thiery J, Teupser D (2010) ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol 30(3):620–627, ATVBAHA.109.196832 [pii]  10.1161/ATVBAHA.109.196832 PubMedCrossRefGoogle Scholar
  15. Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, Finstermeier K, Stahringer A, Wilfert W, Beutner F, Gielen S, Schuler G, Gabel G, Bergert H, Bechmann I, Stadler PF, Thiery J, Teupser D (2013) Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 9(7):e1003588, PGENETICS-D-13-00414 [pii]  10.1371/journal.pgen.1003588 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253(5015):49–53PubMedCrossRefGoogle Scholar
  17. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419, S0092-8674(10)00730-0 [pii]  10.1016/j.cell.2010.06.040 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Kong B, Langerod A, Borresen-Dale AL, Kim SK, van de Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621–629, ng.848 [pii]  10.1038/ng.848 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Hwang HC, Clurman BE (2005) Cyclin E in normal and neoplastic cell cycles. Oncogene 24(17):2776–2786, 1208613 [pii]  10.1038/sj.onc.1208613 PubMedCrossRefGoogle Scholar
  20. Iacobucci I, Sazzini M, Garagnani P, Ferrari A, Boattini A, Lonetti A, Papayannidis C, Mantovani V, Marasco E, Ottaviani E, Soverini S, Girelli D, Luiselli D, Vignetti M, Baccarani M, Martinelli G (2011) A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia. Leuk Res 35(8):1052–1059, S0145-2126(11)00111-1 [pii]  10.1016/j.leukres.2011.02.020 PubMedCrossRefGoogle Scholar
  21. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91(5):649–659, S0092-8674(00)80452-3 [pii]PubMedCrossRefGoogle Scholar
  22. Kim K, Choi J, Heo K, Kim H, Levens D, Kohno K, Johnson EM, Brock HW, An W (2008) Isolation and characterization of a novel H1.2 complex that acts as a repressor of p53-mediated transcription. J Biol Chem 283(14):9113–9126, M708205200 [pii]  10.1074/jbc.M708205200 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Kitagawa M, Higashi H, Jung HK, Suzuki-Takahashi I, Ikeda M, Tamai K, Kato J, Segawa K, Yoshida E, Nishimura S, Taya Y (1996) The consensus motif for phosphorylation by cyclin D1–CDK4 is different from that for phosphorylation by cyclin A/E–CDK2. EMBO J 15(24):7060–7069PubMedCentralPubMedGoogle Scholar
  24. Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T (2013) Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci 70(24):4785–4794. doi: 10.1007/s00018-013-1423-0 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y (2007) pRB family proteins are required for H3K27 trimethylation and polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev 21(1):49–54, 21/1/49 [pii]  10.1101/gad.1499407 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30(16):1956–1962, onc2010568 [pii]  10.1038/onc.2010.568 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A (2001) Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413(6851):83–86, 35092584 [pii]  10.1038/35092584 PubMedCrossRefGoogle Scholar
  28. Krimpenfort P, Ijpenberg A, Song JY, van der Valk M, Nawijn M, Zevenhoven J, Berns A (2007) p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 448(7156):943–946, nature06084 [pii]  10.1038/nature06084 PubMedCrossRefGoogle Scholar
  29. Laptenko O, Prives C (2006) Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13(6):951–961, 4401916 [pii]  10.1038/sj.cdd.4401916 PubMedCrossRefGoogle Scholar
  30. Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351(6326):453–456. doi: 10.1038/351453a0 PubMedCrossRefGoogle Scholar
  31. Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S, Manos PD, Datta S, Lander ES, Schlaeger TM, Daley GQ, Rinn JL (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42(12):1113–1117, ng.710 [pii]  10.1038/ng.710 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239(1):15–27, S0378-1119(99)00368-6 [pii]PubMedCrossRefGoogle Scholar
  33. Matarin M, Brown WM, Singleton A, Hardy JA, Meschia JF (2008) Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21. Stroke 39(5):1586–1589, STROKEAHA.107.502963 [pii]  10.1161/STROKEAHA.107.502963 PubMedCentralPubMedCrossRefGoogle Scholar
  34. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR, Boerwinkle E, Hobbs HH, Cohen JC (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316(5830):1488–1491, 1142447 [pii]  10.1126/science.1142447 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Morachis JM, Murawsky CM, Emerson BM (2010) Regulation of the p53 transcriptional response by structurally diverse core promoters. Genes Dev 24(2):135–147, gad.1856710 [pii]  10.1101/gad.1856710 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Pasmant E, Laurendeau I, Heron D, Vidaud M, Vidaud D, Bieche I (2007) Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 67(8):3963–3969, 67/8/3963 [pii]  10.1158/0008-5472.CAN-06-2004 PubMedCrossRefGoogle Scholar
  37. Pasmant E, Sabbagh A, Masliah-Planchon J, Ortonne N, Laurendeau I, Melin L, Ferkal S, Hernandez L, Leroy K, Valeyrie-Allanore L, Parfait B, Vidaud D, Bieche I, Lantieri L, Wolkenstein P, Vidaud M (2011) Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J Natl Cancer Inst 103(22):1713–1722, djr416 [pii]  10.1093/jnci/djr416 PubMedCrossRefGoogle Scholar
  38. Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2′s inhibition of p53. Cell 92(6):713–723, S0092-8674(00)81400-2 [pii]PubMedCrossRefGoogle Scholar
  39. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323, S0092-8674(07)00659-9 [pii]  10.1016/j.cell.2007.05.022 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Ruas M, Peters G (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378(2):F115–F177, S0304-419X(98)00017-1 [pii]PubMedGoogle Scholar
  41. Sato K, Nakagawa H, Tajima A, Yoshida K, Inoue I (2010) ANRIL is implicated in the regulation of nucleus and potential transcriptional target of E2F1. Oncol Rep 24(3):701–707PubMedGoogle Scholar
  42. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, Hughes TE, Groop L, Altshuler D, Almgren P, Florez JC, Meyer J, Ardlie K, Bengtsson Bostrom K, Isomaa B, Lettre G, Lindblad U, Lyon HN, Melander O, Newton-Cheh C, Nilsson P, Orho-Melander M, Rastam L, Speliotes EK, Taskinen MR, Tuomi T, Guiducci C, Berglund A, Carlson J, Gianniny L, Hackett R, Hall L, Holmkvist J, Laurila E, Sjogren M, Sterner M, Surti A, Svensson M, Tewhey R, Blumenstiel B, Parkin M, Defelice M, Barry R, Brodeur W, Camarata J, Chia N, Fava M, Gibbons J, Handsaker B, Healy C, Nguyen K, Gates C, Sougnez C, Gage D, Nizzari M, Gabriel SB, Chirn GW, Ma Q, Parikh H, Richardson D, Ricke D, Purcell S (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829):1331–1336, 1142358 [pii]  10.1126/science.1142358 PubMedCrossRefGoogle Scholar
  43. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu T, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA, Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS, Boehnke M (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341–1345, 1142382 [pii]  10.1126/science.1142382 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85(1):27–37, S0092-8674(00)81079-X [pii]PubMedCrossRefGoogle Scholar
  45. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602, S0092-8674(00)81902-9 [pii]PubMedCrossRefGoogle Scholar
  46. Sharpless NE (2005) INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res 576(1-2):22–38, S0027-5107(05)00151-X [pii]  10.1016/j.mrfmmm.2004.08.021 PubMedCrossRefGoogle Scholar
  47. Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ, Wu EA, Horner JW, DePinho RA (2001) Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413(6851):86–91, 35092592 [pii]  10.1038/35092592 PubMedCrossRefGoogle Scholar
  48. Sherr CJ (1996) Cancer cell cycles. Science 274(5293):1672–1677PubMedCrossRefGoogle Scholar
  49. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2(2):103–112, S1535610802001022 [pii]PubMedCrossRefGoogle Scholar
  50. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512PubMedCrossRefGoogle Scholar
  51. Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y, Boisselier B, Delattre JY, Hoang-Xuan K, El Hallani S, Idbaih A, Zelenika D, Andersson U, Henriksson R, Bergenheim AT, Feychting M, Lonn S, Ahlbom A, Schramm J, Linnebank M, Hemminki K, Kumar R, Hepworth SJ, Price A, Armstrong G, Liu Y, Gu X, Yu R, Lau C, Schoemaker M, Muir K, Swerdlow A, Lathrop M, Bondy M, Houlston RS (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41(8):899–904, ng.407 [pii]  10.1038/ng.407 PubMedCrossRefGoogle Scholar
  52. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G (1998) The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17(17):5001–5014. doi: 10.1093/emboj/17.17.5001 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Subramanian M, Jones MF, Lal A (2013) Long non-coding RNAs embedded in the Rb and p53 pathways. Cancer (Basel) 5(4):1655–1675, cancers5041655 [pii]  10.3390/cancers5041655 CrossRefGoogle Scholar
  54. Takagi M, Absalon MJ, McLure KG, Kastan MB (2005) Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123(1):49–63, S0092-8674(05)00814-7 [pii]  10.1016/j.cell.2005.07.034 PubMedCrossRefGoogle Scholar
  55. Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6(12):909–923, nrc2012 [pii]  10.1038/nrc2012 PubMedCrossRefGoogle Scholar
  56. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. doi: 10.1038/35042675 PubMedCrossRefGoogle Scholar
  57. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2(8):594–604, nrc864 [pii]  10.1038/nrc864 PubMedCrossRefGoogle Scholar
  58. Wan G, Mathur R, Hu X, Liu Y, Zhang X, Peng G, Lu X (2013) Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal 25(5):1086–1095, S0898-6568(13)00046-6 [pii]  10.1016/j.cellsig.2013.02.006 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Wang S, El-Deiry WS (2006) p73 or p53 directly regulates human p53 transcription to maintain cell cycle checkpoints. Cancer Res 66(14):6982–6989, 66/14/6982 [pii] 10.1158/0008-5472.CAN-06-0511PubMedCrossRefGoogle Scholar
  60. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004a) Role of histone H2A ubiquitination in polycomb silencing. Nature 431(7010):873–878, nature02985 [pii]  10.1038/nature02985 PubMedCrossRefGoogle Scholar
  61. Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS (2004b) Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 14(5):637–646, S1097276504002928 [pii]  10.1016/j.molcel.2004.05.009 PubMedCrossRefGoogle Scholar
  62. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330, 0092-8674(95)90385-2 [pii]PubMedCrossRefGoogle Scholar
  63. Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, Ballman KV, Berger M, Buckner JC, Chang S, Giannini C, Halder C, Kollmeyer TM, Kosel ML, LaChance DH, McCoy L, O’Neill BP, Patoka J, Pico AR, Prados M, Quesenberry C, Rice T, Rynearson AL, Smirnov I, Tihan T, Wiemels J, Yang P, Wiencke JK (2009) Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 41(8):905–908, ng.408 [pii]  10.1038/ng.408 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38(5):662–674, S1097-2765(10)00335-7 [pii]  10.1016/j.molcel.2010.03.021 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG, Gorospe M (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47(4):648–655, S1097-2765(12)00552-7 [pii]  10.1016/j.molcel.2012.06.027 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, Cui H (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451(7175):202–206, nature06468 [pii]  10.1038/nature06468 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Zeng Y, Kotake Y, Pei XH, Smith MD, Xiong Y (2011) p53 binds to and is required for the repression of Arf tumor suppressor by HDAC and polycomb. Cancer Res 71(7):2781–2792, 0008-5472.CAN-10-3483 [pii]  10.1158/0008-5472.CAN-10-3483 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Zhang Y, Xiong Y, Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92(6):725–734, S0092-8674(00)81401-4 [pii]PubMedCrossRefGoogle Scholar
  69. Zhang A, Zhou N, Huang J, Liu Q, Fukuda K, Ma D, Lu Z, Bai C, Watabe K, Mo YY (2013) The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res 23(3):340–350, cr2012164 [pii]  10.1038/cr.2012.164 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and EngineeringKinki UniversityIizukaJapan
  2. 2.Department of Molecular BiologyHamamatsu University School of MedicineHamamatsuJapan

Personalised recommendations