Temporal Coding of Insulin Signaling

Abstract

During recent years, it has become clearer that temporal patterns of stimuli and molecules are important in the regulation of cellular functions. For example, many hormones show distinct temporal patterns in vivo, which are important for homeostasis. One of the unique characteristics of cellular signaling pathways is that a common signaling pathway can selectively regulate multiple cellular functions depending on their temporal patterns. Therefore, one of the major advances in understanding the “pathogenic dysregulation of signaling” is to reveal the temporal coding mechanisms of signaling pathways related to pathogenesis. A systems biological approach combining experiments and computational analysis is necessary to address this issue. In this chapter, we will introduce the concept that the insulin-dependent AKT pathway uses temporal patterns multiplexing for selective regulation of signaling molecules and metabolites, which depend on their network structures and kinetics, using rat hepatoma Fao cells. These results represent a huge step forward in our understanding of insulin actions and type II diabetes mellitus.

Keywords

Systems biology Modeling Temporal coding Temporal pattern Insulin Signaling pathway AKT pathway Metabolism Diabetes mellitus (T2DM) 

References

  1. Boura-Halfon S, Zick Y (2009) Serine kinases of insulin receptor substrate proteins. Vitam Horm 80:313–349PubMedCrossRefGoogle Scholar
  2. Brabant G, Prank K, Schijfl C (1992) Pulsatile patterns in hormone secretion. Trends Endocrinol Metab 3:183–190PubMedCrossRefGoogle Scholar
  3. Bratusch-Marrain PR, Komjati M, Waldhausl WK (1986) Efficacy of pulsatile versus continuous insulin administration on hepatic glucose production and glucose utilization in type I diabetic humans. Diabetes 35:922–926PubMedCrossRefGoogle Scholar
  4. Brown MS, Goldstein JL (2008) Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 7:95–96PubMedCrossRefGoogle Scholar
  5. Bruce DG, Chisholm DJ, Storlien LH, Kraegen EW (1988) Physiological importance of deficiency in early prandial insulin secretion in non-insulin-dependent diabetes. Diabetes 37:736–744PubMedCrossRefGoogle Scholar
  6. Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature (Lond) 392:933–936CrossRefGoogle Scholar
  7. Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10:262–267PubMedCrossRefGoogle Scholar
  8. Du J, Guan T, Zhang H, Xia Y, Liu F, Zhang Y (2008) Inhibitory crosstalk between ERK and AMPK in the growth and proliferation of cardiac fibroblasts. Biochem Biophys Res Commun 368:402–407PubMedCrossRefGoogle Scholar
  9. Fujita KA, Toyoshima Y, Uda S, Ozaki Y, Kubota H, Kuroda S (2010) Decoupling of receptor and downstream signals in the Akt pathway by its low-pass filter characteristics. Sci Signal 3:ra56Google Scholar
  10. Kholodenko BN, Hancock JF, Kolch W (2010) Signalling ballet in space and time. Nat Rev Mol Cell Biol 11:414–426PubMedCrossRefPubMedCentralGoogle Scholar
  11. Koopmans SJ, Sips HCM, Krans HMJ, Radder JK (1996) Pulsatile intravenous insulin replacement in streptozotocin diabetic rats is more efficient than continuous delivery: effects on glycaemic control, insulin-mediated glucose metabolism and lipolysis. Diabetologia 39:391–400PubMedCrossRefGoogle Scholar
  12. Kubota H, Noguchi R, Toyoshima Y, Ozaki Y, Uda S, Watanabe K, Ogawa W, Kuroda S (2012) Temporal coding of insulin action through multiplexing of the AKT pathway. Mol Cell 46:820–832PubMedCrossRefGoogle Scholar
  13. Lawlor MA, Alessi DR (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114:2903–2910PubMedGoogle Scholar
  14. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk: implications for tuberous sclerosis and cancer pathogenesis. Cell 121:179–193PubMedCrossRefGoogle Scholar
  15. Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138:760–773PubMedCrossRefPubMedCentralGoogle Scholar
  16. Massimi M, Tomassini A, Sciubba F, Sobolev AP, Devirgiliis LC, Miccheli A (2012) Effects of resveratrol on HepG2 cells as revealed by (1)H-NMR based metabolic profiling. Biochim Biophys Acta 1820:1–8PubMedCrossRefGoogle Scholar
  17. Noguchi R, Kubota H, Yugi K, Toyoshima Y, Komori Y, Soga T, Kuroda S (2013) The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin patterns. Mol Syst Biol 9:664PubMedCrossRefPubMedCentralGoogle Scholar
  18. Nordlie RC, Foster JD, Lange AJ (1999) Regulation of glucose production by the liver. Annu Rev Nutr 19:379–406PubMedCrossRefGoogle Scholar
  19. O’Rahilly S, Turner RG, Matthews DR (1988) Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. N Engl J Med 318:1225–1230PubMedCrossRefGoogle Scholar
  20. Ozaki Y-I, Sasagawa S, Kuroda S (2005) Dynamic characteristics of transient responses. J Biochem (Tokyo) 137:659–663CrossRefGoogle Scholar
  21. Polonsky KS (1988) Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest 81:442–448PubMedCrossRefPubMedCentralGoogle Scholar
  22. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature (Lond) 414:799–806CrossRefGoogle Scholar
  23. Sasagawa S, Ozaki Y, Fujita K, Kuroda S (2005) Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol 7:365–373PubMedCrossRefGoogle Scholar
  24. Scribner DM, Witowski NE, Mulier KE, Lusczek ER, Wasiluk KR, Beilman GJ (2010) Liver metabolomic changes identify biochemical pathways in hemorrhagic shock. J Surg Res 164:e131–e139PubMedCrossRefGoogle Scholar
  25. Shoval O, Alon U (2010) SnapShot: network motifs. Cell 143:326–326.e321PubMedCrossRefGoogle Scholar
  26. Sindelar DK, Chu CA, Neal DW, Cherrington AD (1997) Interaction of equal increments in arterial and portal vein insulin on hepatic glucose production in the dog. Am J Physiol 273:E972–E980PubMedGoogle Scholar
  27. Skurat AV, Roach PJ (1995) Phosphorylation of sites 3a and 3b (Ser640 and Ser644) in the control of rabbit muscle glycogen synthase. J Biol Chem 270:12491–12497PubMedCrossRefGoogle Scholar
  28. Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, Kakazu Y, Ishikawa T, Robert M, Nishioka T et al (2006) Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem 281:16768–16776PubMedCrossRefGoogle Scholar
  29. Toyoshima Y, Kakuda H, Fujita KA, Uda S, Kuroda S (2012) Sensitivity control through attenuation of signal transfer efficiency by negative regulation of cellular signalling. Nat Commun 3:743PubMedCrossRefGoogle Scholar
  30. Wang Y, Roach PJ (1993) Inactivation of rabbit muscle glycogen synthase by glycogen synthase kinase-3. Dominant role of the phosphorylation of Ser-640 (site-3a). J Biol Chem 268:23876–23880PubMedGoogle Scholar
  31. Watanabe C, Seino Y, Miyahira H, Yamamoto M, Fukami A, Ozaki N, Takagishi Y, Sato J, Fukuwatari T, Shibata K et al (2012) Remodeling of hepatic metabolism and hyperaminoacidemia in mice deficient in proglucagon-derived peptides. Diabetes 61:74–84PubMedCrossRefPubMedCentralGoogle Scholar
  32. Whiteman EL, Cho H, Birnbaum MJ (2002) Role of Akt/protein kinase B in metabolism. Trend Endocrinol Metab 13:444–451CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
  2. 2.Department of Biological Sciences, Graduate School of ScienceUniversity of TokyoTokyoJapan
  3. 3.Department of Computational Biology, Graduate School of Frontier SciencesUniversity of TokyoTokyoJapan

Personalised recommendations