Advertisement

Actin Filament Formation in Myofibrils and Cell Protrusions Regulated by Signal Transduction

  • Takeshi EndoEmail author
  • Kazunori Takano

Abstract

Actin filaments play crucial roles in a wide variety of cellular functions in all eukaryotic cell types. Typically, they are essential for muscle contraction as thin filaments of contractile myofibrils and for cell migration as components of stress fibers, filopodia, and lamellipodia. Specific actin nucleation factors and elongation factors participate in actin filament formation depending on cell types and actin filament-containing structures. The formation of actin filaments as well as their dynamics is regulated by complicated signaling mechanisms. We summarize here molecular and signaling mechanisms of actin filament formation of myofibrils and cytonemes, a special type of cell protrusions involved in intercellular signaling, focusing on our recent research on these subjects. Myofibrils are well-known muscle contractile structures consisting mainly of actin and myosin filaments. However, molecular and signaling mechanisms of their formation have been obscure. We have elucidated the mechanisms of skeletal muscle myofibrillar actin filament formation induced by insulin-like growth factor 1 (IGF-1). IGF-1-stimulated phosphatidylinositol 3-kinase–Akt signaling induces the formation of the nebulin–N-WASP complex, which nucleates actin and forms actin filaments from the Z-bands. We have also examined the mechanisms of myofibrillar actin filament formation in cardiac muscle, in which nebulin is absent. On the other hand, cytonemes represent novel highly efficient, long-range intercellular signaling machinery. We have found that fibroblast growth factor signaling causes activation of RhoD, which in turn activates mDia3C to form actin filaments leading to cytoneme formation.

Keywords

Actin filament Myofibril Skeletal muscle Cardiac muscle IGF-1 signaling N-WASP Cell protrusion Cytoneme Intercellular signaling RhoD 

Notes

Acknowledgments

Our study is supported by Grants-in-Aid for Scientific Research on Innovative Areas (23117506 and 25117706) from the Ministry of Education, Culture, Sports, Science, and Technology; Grants-in-Aid for Scientific Research (B) (23300144), for Young Scientists (B) (24770118), and for Challenging Exploratory Research (25670104) from Japan Society for the Promotion of Science; and Intramural Research Grant (23–5) for Neurological and Psychiatric Disorders of National Center of Neurology and Psychiatry.

References

  1. Bang ML, Li X, Littlefield R, Bremner S, Thor A, Knowlton KU, Lieber RL, Chen J (2006) Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J Cell Biol 173:905–916PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019PubMedCrossRefGoogle Scholar
  3. Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11:237–251PubMedCrossRefPubMedCentralGoogle Scholar
  4. Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238PubMedCrossRefGoogle Scholar
  5. Chereau D, Boczkowska M, Skwarek-Maruszewska A, Fujiwara I, Hayes DB, Rebowski G, Lappalainen P, Pollard TD, Dominguez R (2008) Leiomodin is an actin filament nucleator in muscle cells. Science 320:239–243PubMedCrossRefPubMedCentralGoogle Scholar
  6. Chesarone MA, Goode BL (2009) Actin nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol 21:28–37PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11:62–74PubMedCrossRefGoogle Scholar
  8. Chhabra ES, Higgs HN (2007) The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 9:1110–1121PubMedCrossRefGoogle Scholar
  9. Davis DM, Sowinski S (2008) Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 9:431–436PubMedCrossRefGoogle Scholar
  10. Dominguez R (2009) Actin filament nucleation and elongation factors–structure-function relationships. Crit Rev Biochem Mol Biol 44:351–366PubMedCrossRefPubMedCentralGoogle Scholar
  11. Endo T (2007) Stem cells and plasticity of skeletal muscle cell differentiation: potential application to cell therapy for degenerative muscular diseases. Regen Med 2:243–256PubMedCrossRefGoogle Scholar
  12. Faix J, Breitsprecher D, Stradal TE, Rottner K (2009) Filopodia: complex models for simple rods. Int J Biochem Cell Biol 41:1656–1664PubMedCrossRefGoogle Scholar
  13. Gokhin DS, Fowler VM (2013) A two-segment model for thin filament architecture in skeletal muscle. Nat Rev Mol Cell Biol 14:113–119PubMedCrossRefPubMedCentralGoogle Scholar
  14. Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726PubMedCrossRefGoogle Scholar
  15. Gradilla AC, Guerrero I (2013) Cytoneme-mediated cell-to-cell signaling during development. Cell Tissue Res 352:59–66PubMedCrossRefGoogle Scholar
  16. Harvey PA, Leinwand LA (2011) The cell biology of disease: cellular mechanisms of cardiomyopathy. J Cell Biol 194:355–365PubMedCrossRefPubMedCentralGoogle Scholar
  17. Hsiung F, Ramirez-Weber FA, Iwaki DD, Kornberg TB (2005) Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic. Nature (Lond) 437:560–563CrossRefGoogle Scholar
  18. Jefferies JL, Towbin JA (2010) Dilated cardiomyopathy. Lancet 375:752–762PubMedCrossRefGoogle Scholar
  19. Kawamura K, Takano K, Suetsugu S, Kurisu S, Yamazaki D, Miki H, Takenawa T, Endo T (2004) N-WASP and WAVE2 acting downstream of phosphatidylinositol 3-kinase are required for myogenic cell migration induced by hepatocyte growth factor. J Biol Chem 279:54862–54871PubMedCrossRefGoogle Scholar
  20. Koizumi K, Takano K, Kaneyasu A, Watanabe-Takano H, Tokuda E, Abe T, Watanabe N, Takenawa T, Endo T (2012) RhoD activated by fibroblast growth factor induces cytoneme-like cellular protrusions through mDia3C. Mol Biol Cell 23:4647–4661PubMedCrossRefPubMedCentralGoogle Scholar
  21. Kornberg TB, Roy S (2014) Cytonemes as specialized signaling filopodia. Development (Camb) 141:729–736CrossRefGoogle Scholar
  22. Labeit S, Ottenheijm CA, Granzier H (2011) Nebulin, a major player in muscle health and disease. FASEB J 25:822–829PubMedCrossRefPubMedCentralGoogle Scholar
  23. Ladwein M, Rottner K (2008) On the Rho’d: the regulation of membrane protrusions by Rho-GTPases. FEBS Lett 582:2066–2074PubMedCrossRefGoogle Scholar
  24. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293PubMedCrossRefPubMedCentralGoogle Scholar
  25. Lehtokari VL, Pelin K, Sandbacka M, Ranta S, Donner K, Muntoni F, Sewry C, Angelini C, Bushby K, Van den Bergh P, Iannaccone S, Laing NG, Wallgren-Pettersson C (2006) Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Hum Mutat 27:946–956PubMedCrossRefGoogle Scholar
  26. Littlefield RS, Fowler VM (2008) Thin filament length regulation in striated muscle sarcomeres: pointed-end dynamics go beyond a nebulin ruler. Semin Cell Dev Biol 19:511–519PubMedCrossRefPubMedCentralGoogle Scholar
  27. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6:458–471PubMedCrossRefGoogle Scholar
  28. Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454PubMedCrossRefGoogle Scholar
  29. Mellor H (2010) The role of formins in filopodia formation. Biochim Biophys Acta 1803:191–200PubMedCrossRefGoogle Scholar
  30. Murphy C, Saffrich R, Grummt M, Gournier H, Rybin V, Rubino M, Auvinen P, Lütcke A, Parton RG, Zerial M (1996) Endosome dynamics regulated by a Rho protein. Nature (Lond) 384:427–432CrossRefGoogle Scholar
  31. Önfelt B, Nedvetzki S, Yanagi K, Davis DM (2004) Cutting edge: membrane nanotubes connect immune cells. J Immunol 173:1511–1513PubMedCrossRefGoogle Scholar
  32. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928PubMedCrossRefGoogle Scholar
  33. Purevjav E, Varela J, Morgado M, Kearney DL, Li H, Taylor MD, Arimura T, Moncman CL, McKenna W, Murphy RT, Labeit S, Vatta M, Bowles NE, Kimura A, Boriek AM, Towbin JA (2010) Nebulette mutations are associated with dilated cardiomyopathy and endocardial fibroelastosis. J Am Coll Cardiol 56:1493–1502PubMedCrossRefPubMedCentralGoogle Scholar
  34. Ramírez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97:599–607PubMedCrossRefGoogle Scholar
  35. Ridley AJ (2011) Life at the leading edge. Cell 145:1012–1022PubMedCrossRefGoogle Scholar
  36. Rommel C, Clarke BA, Zimmermann S, Nuñez L, Rossman R, Reid K, Moelling K, Yancopoulos GD, Glass DJ (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286:1738–1741PubMedCrossRefGoogle Scholar
  37. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013PubMedCrossRefGoogle Scholar
  38. Roy S, Hsiung F, Kornberg TB (2011) Specificity of Drosophila cytonemes for distinct signaling pathways. Science 332:354–358PubMedCrossRefPubMedCentralGoogle Scholar
  39. Roy S, Huang H, Liu S, Kornberg TB (2014) Cytoneme-mediated contact-dependent transport of the Drosophila Decapentaplegic signaling protein. Science 343:1244624PubMedCrossRefPubMedCentralGoogle Scholar
  40. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010PubMedCrossRefGoogle Scholar
  41. Sanders TA, Llagostera E, Barna M (2013) Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature (Lond) 497:628–632CrossRefGoogle Scholar
  42. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412PubMedCrossRefPubMedCentralGoogle Scholar
  43. Skwarek-Maruszewska A, Boczkowska M, Zajac AL, Kremneva E, Svitkina T, Dominguez R, Lappalainen P (2010) Different localizations and cellular behaviors of leiomodin and tropomodulin in mature cardiomyocyte sarcomeres. Mol Biol Cell 21:3352–3361PubMedCrossRefPubMedCentralGoogle Scholar
  44. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403PubMedCrossRefGoogle Scholar
  45. Takano K, Watanabe-Takano H, Suetsugu S, Kurita S, Tsujita K, Kimura S, Karatsu T, Takenawa T, Endo T (2010) Nebulin and N-WASP cooperate to cause IGF-1-induced sarcomeric actin filament formation. Science 330:1536–1540PubMedCrossRefGoogle Scholar
  46. Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48PubMedCrossRefGoogle Scholar
  47. Tsubakimoto K, Matsumoto K, Abe H, Ishii J, Amano M, Kaibuchi K, Endo T (1999) Small GTPase RhoD suppresses cell migration and cytokinesis. Oncogene 18:2431–2440PubMedCrossRefGoogle Scholar
  48. Tsukada T, Pappas CT, Moroz N, Antin PB, Kostyukova AS, Gregorio CC (2010) Leiomodin-2 is an antagonist of tropomodulin-1 at the pointed end of the thin filaments in cardiac muscle. J Cell Sci 123:3136–3145PubMedCrossRefPubMedCentralGoogle Scholar
  49. Wallgren-Pettersson C, Sewry CA, Nowak KJ, Laing NG (2011) Nemaline myopathies. Semin Pediatr Neurol 18:230–238PubMedCrossRefGoogle Scholar
  50. Wang X, Gerdes HH (2012) Long-distance electrical coupling via tunneling nanotubes. Biochim Biophys Acta 1818:2082–2086PubMedCrossRefGoogle Scholar
  51. Witt CC, Burkart C, Labeit D, McNabb M, Wu Y, Granzier H, Labeit S (2006) Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J 25:3843–3855PubMedCrossRefPubMedCentralGoogle Scholar
  52. Xu Q, Wu Z (2000) The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. J Biol Chem 275:36750–36757PubMedCrossRefGoogle Scholar
  53. Yamamoto DL, Vitiello C, Zhang J, Gokhin DS, Castaldi A, Coulis G, Piaser F, Filomena MC, Eggenhuizen PJ, Kunderfranco P, Camerini S, Takano K, Endo T, Crescenzi M, Luther PK, Lieber RL, Chen J, Bang ML (2013) The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse. J Cell Sci 126:5477–5489PubMedCrossRefPubMedCentralGoogle Scholar
  54. Yang C, Svitkina T (2011) Filopodia initiation: focus on the Arp2/3 complex and formins. Cell Adhes Migr 5:402–408CrossRefGoogle Scholar
  55. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Biology, Graduate School of Science, and Graduate School of Advanced Integration ScienceChiba UniversityChibaJapan

Personalised recommendations