Advertisement

Azacalixarene: An Ever-Growing Class in the Calixarene Family

  • Hirohito Tsue
  • Ryusei Oketani

Abstract

The chemistry of azacalixarenes, in which the aromatic rings are linked by nitrogen bridges, has been growing steadily and attracting much attention as a new class in the calixarene family ever since our previous review of azacalixarenes was published in 2008. In the years that have followed, an increasing variety of azacalixarene derivatives have been reported to date. Although the diversity is still limited as compared to carbon- and sulfur-bridged calixarenes, the intriguing chemistry of azacalixarenes on the basis of the introduction of nitrogen atoms as the bridging units has thus far been disclosed. Particularly encouraging progress in the azacalixarene chemistry since 2008 has been made in the synthetic chemistry as well as the host–guest chemistry in the solid state, as revealed by recent studies. This review covers the papers published in the last 6 years, especially concentrating on the preparations and complexation properties of this new calixarene family.

Keywords

Azacalixarene Synthesis Complexation Crystal structure 

Notes

Acknowledgments

The author’s work was supported by Grants-in-Aids for Scientific Research (C) (Nos. 19550037, 23550052) from Japan Society for the Promotion of Science (JSPS). The author’s synchrotron radiation experiments were performed at the BL02B2 beamline of the SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2009A1425, 2010A1346, 2010B1496, 2011B1303, and 2013B1160).

References

  1. 1.
    B. König, M.H. Fonseca, Eur. J. Inorg. Chem. 2303 (2000)Google Scholar
  2. 2.
    M. Vysotsky, M. Saadioui, V. Böhmer, in Calixarenes 2001, ed. by Z. Asfari, V. Böhmer, J. Harrowfield, J. Vicens, M. Saadioui (Kluwer, Dordrecht, 2001), pp. 250–265Google Scholar
  3. 3.
    H. Tsue, K. Ishibashi, R. Tamura, in Heterocyclic Supramolecules I, ed. by K. Matsumoto. Topics in Heterocyclic Chemistry, vol. 17 (Springer, Berlin/Heidelberg, 2008), pp. 73–96CrossRefGoogle Scholar
  4. 4.
    M.-X. Wang, Chem. Commun. 4541 (2008)Google Scholar
  5. 5.
    H. Tsue, K. Ishibashi, R. Tamura, J. Synth. Org. Chem. Jpn. 67, 898 (2009)CrossRefGoogle Scholar
  6. 6.
    M.-X. Wang, Acc. Chem. Res. 45, 182 (2012)CrossRefGoogle Scholar
  7. 7.
    G.W. Smith, Nature 198, 879 (1963)CrossRefGoogle Scholar
  8. 8.
    S.-X. Fa, L.-X. Wang, D.-X. Wang, L. Zhao, M.-X. Wang, J. Org. Chem. 79, 3559 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Tsue, K. Ono, S. Tokita, K. Ishibashi, K. Matsui, H. Takahashi, K. Miyata, D. Takahashi, R. Tamura, Org. Lett. 13, 490 (2011)CrossRefGoogle Scholar
  10. 10.
    H. Tsue, K. Ono, S. Tokita, H. Takahashi, R. Tamura, CrystEngComm 15, 1536 (2013)CrossRefGoogle Scholar
  11. 11.
    H. Tsue, H. Takahashi, K. Ishibashi, R. Inoue, S. Shimizu, D. Takahashi, R. Tamura, CrystEngComm 14, 1021 (2012)CrossRefGoogle Scholar
  12. 12.
    H. Tsue, K. Ishibashi, S. Tokita, H. Takahashi, K. Matsui, R. Tamura, Chem. Eur. J. 14, 6125 (2008)CrossRefGoogle Scholar
  13. 13.
    H. Tsue, K. Matsui, K. Ishibashi, H. Takahashi, S. Tokita, K. Ono, R. Tamura, J. Org. Chem. 73, 7748 (2008)CrossRefGoogle Scholar
  14. 14.
    H. Tsue, K. Miyata, D. Takahashi, H. Takahashi, K. Sasaki, R. Tamura, Hetrocycles 86, 159 (2012)CrossRefGoogle Scholar
  15. 15.
    K. Ishibashi, H. Tsue, H. Takahashi, S. Tokita, K. Matsui, R. Tamura, Hetrocycles 76, 541 (2008)CrossRefGoogle Scholar
  16. 16.
    N. Uchida, R. Zhi, J. Kuwabara, T. Kanbara, Tetrahedron Lett. 55, 3070 (2014)CrossRefGoogle Scholar
  17. 17.
    N. Uchida, J. Kuwabara, A. Taketoshi, T. Kanbara, J. Org. Chem. 77, 10631 (2012)CrossRefGoogle Scholar
  18. 18.
    N. Uchida, T. Sato, J. Kuwabara, Y. Nishimura, T. Kanbara, Chem. Lett. 43, 459 (2014)CrossRefGoogle Scholar
  19. 19.
    E.-X. Zhang, D.-X. Wang, Q.-Y. Zheng, M.-X. Wang, Org. Lett. 10, 2565 (2008)CrossRefGoogle Scholar
  20. 20.
    H.-Y. Gong, D.-X. Wang, Q.-Y. Zheng, M.-X. Wang, Tetrahedron 65, 87–92 (2009)CrossRefGoogle Scholar
  21. 21.
    B. Yao, D.-X. Wang, Z.-T. Huang, M.-X. Wang, Chem. Commun. 2899 (2009)Google Scholar
  22. 22.
    A.-J. Guan, E.-X. Zhang, J.-F. Xiang, Q. Li, Q.-F. Yang, L. Li, Y.-L. Tang, M.-X. Wang, J. Phys. Chem. B 115, 12584 (2011)CrossRefGoogle Scholar
  23. 23.
    A.-J. Guan, E.-X. Zhang, J.-F. Xiang, Q.-F. Yang, Q. Li, H.-X. Sun, D.-X. Wang, Q.-Y. Zheng, G.-Z. Xu, Y.-L. Tang, J. Phys. Chem. Lett. 3, 131 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Yi, S. Fa, W. Cao, L. Zeng, M. Wang, H. Xu, X. Zhang, Chem. Commun. 48, 7495 (2012)CrossRefGoogle Scholar
  25. 25.
    C.-Y. Gao, L. Zhao, M.-X. Wang, J. Am. Chem. Soc. 134, 824 (2012)CrossRefGoogle Scholar
  26. 26.
    C.-Y. Gao, L. Zhao, M.-X. Wang, J. Am. Chem. Soc. 133, 8448 (2011)CrossRefGoogle Scholar
  27. 27.
    L.-X. Wang, D.-X. Wang, Z.-T. Huang, M.-X. Wang, J. Org. Chem. 75, 741 (2010)CrossRefGoogle Scholar
  28. 28.
    J.-T. Li, L.-X. Wang, D.-X. Wang, L. Zhao, M.-X. Wang, J. Org. Chem. 79, 2178 (2014)CrossRefGoogle Scholar
  29. 29.
    J.-C. Wu, L. Zhao, D.-X. Wang, M.-X. Wang, Inorg. Chem. 51, 3860 (2012)CrossRefGoogle Scholar
  30. 30.
    L.-X. Wang, L. Zhao, D.-X. Wang, M.-X. Wang, Chem. Commun. 47, 9690 (2011)CrossRefGoogle Scholar
  31. 31.
    J. Wu, L. Zhao, D. Wang, M. Wang, Chin. J. Chem. 31, 589 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Clayden, S.J.M. Rowbottom, W.J. Ebenezer, M.G. Hutchings, Org. Biomol. Chem. 7, 4871 (2009)CrossRefGoogle Scholar
  33. 33.
    J.M. Caio, T. Esteves, S. Carvalho, C. Moiteiro, V. Félix, Org. Biomol. Chem. 12, 589 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Ito, S. Inoue, Y. Hirao, K. Furukawa, T. Kato, K. Tanaka, Chem. Commun. 3242 (2008)Google Scholar
  35. 35.
    B. Yao, Z.-L. Wang, H. Zhang, D.-X. Wang, L. Zhao, M.-X. Wang, J. Org. Chem. 77, 3336 (2012)CrossRefGoogle Scholar
  36. 36.
    M. Touil, M. Lachkar, O. Siri, Tetrahedron Lett. 49, 7250 (2008)CrossRefGoogle Scholar
  37. 37.
    H. Konishi, S. Hashimoto, T. Sakakibara, S. Matsubara, Y. Yasukawa, O. Morikawa, K. Kobayashi, Tetrahedron Lett. 50, 620 (2009)CrossRefGoogle Scholar
  38. 38.
    Y. Yasukawa, K. Kobayashi, H. Konishi, Tetrahedron Lett. 50, 5130 (2009)CrossRefGoogle Scholar
  39. 39.
    J.L. Katz, B.A. Tschaen, Org. Lett. 12, 4300 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Touil, M. Elhabiri, M. Lachkar, O. Siri, Eur. J. Org. Chem. 1914 (2011)Google Scholar
  41. 41.
    J. Clayden, S.J.M. Rowbottom, M.G. Hutchings, W.J. Ebenezer, Tetrahedron Lett. 50, 3923 (2009)CrossRefGoogle Scholar
  42. 42.
    Y.-X. Fang, L. Zhao, D.-X. Wang, M.-X. Wang, J. Org. Chem. 77, 10073 (2012)CrossRefGoogle Scholar
  43. 43.
    R. Haddoub, M. Touil, Z. Chen, J.-M. Raimundo, P. Marsal, M. Elhabiri, O. Siri, Eur. J. Org. Chem. 745 (2014)Google Scholar
  44. 44.
    B.T. Hayes, R.F. Hunter, Chem. Ind. 193 (1956)Google Scholar
  45. 45.
    B.T. Hayes, R.F. Hunter, J. Appl. Chem. 8, 743 (1958)CrossRefGoogle Scholar
  46. 46.
    H. Tsue, K. Ishibashi, H. Takahashi, R. Tamura, Org. Lett. 7, 2165 (2005)CrossRefGoogle Scholar
  47. 47.
    K. Ishibashi, H. Tsue, H. Takahashi, R. Tamura, Tetrahedron Asymmetry 20, 375 (2009)CrossRefGoogle Scholar
  48. 48.
    V. Böhmer, P. Chhim, H. Kämmerer, Makromol. Chem. 180, 2503 (1979)CrossRefGoogle Scholar
  49. 49.
    K. Ishibashi, H. Tsue, S. Tokita, K. Matsui, H. Takahashi, R. Tamura, Org. Lett. 8, 5991 (2006)CrossRefGoogle Scholar
  50. 50.
    C.D. Gutsche, in Calixarenes, ed. by J.F. Stoddart (Royal Society of Chemistry, Cambridge, 1989), pp. 127–148Google Scholar
  51. 51.
    C.D. Gutsche, in Calixarenes: A Versatile Class of Macrocyclic Compounds, ed. by J. Vicens, V. Böhmer (Kluwer, Dordrecht, 1991), pp. 12–26Google Scholar
  52. 52.
    C.D. Gutsche, in Calixarenes Revisited, ed. by J.F. Stoddart (Royal Society of Chemistry, Cambridge, 1998), pp. 79–145CrossRefGoogle Scholar
  53. 53.
    I. Thondorf, A. Shivanyuk, V. Böhmer, in Calixarenes 2001, ed. by Z. Asfari, V. Böhmer, J. Harrowfield, J. Vicens, M. Saadioui (Kluwer, Dordrecht, 2001), pp. 26–53Google Scholar
  54. 54.
    H. Graubaum, G. Lutze, B.J. Costisella, J. Prakt. Chem./Chem.-Ztg. 339, 266 (1997)CrossRefGoogle Scholar
  55. 55.
    H. Graubaum, G. Lutze, B.J. Costisella, J. Prakt. Chem./Chem.-Ztg. 339, 672 (1997)CrossRefGoogle Scholar
  56. 56.
    M.-X. Wang, H.-B. Yang, J. Am. Chem. Soc. 126, 15412 (2004)CrossRefGoogle Scholar
  57. 57.
    Q.-Q. Wang, D.-X. Wang, H.-W. Ma, M.-X. Wang, Org. Lett. 8, 5967 (2006)CrossRefGoogle Scholar
  58. 58.
    M.-X. Wang, X.-H. Zhang, Q.-Y. Zheng, Angew. Chem. Int. Ed. Engl. 43, 838 (2004)CrossRefGoogle Scholar
  59. 59.
    H.-Y. Gong, X.-H. Zhang, D.-X. Wang, H.-W. Ma, Q.-Y. Zheng, M.-X. Wang, Chem. Eur. J. 12, 9262 (2006)CrossRefGoogle Scholar
  60. 60.
    E.-X. Zhang, D.-X. Wang, Q.-Y. Zheng, M.-X. Wang, Org. Lett. 10, 2565 (2008)CrossRefGoogle Scholar
  61. 61.
    H. Tsue, K. Ishibashi, S. Tokita, K. Sakai, Jpn. Pat. Appl. 2009–21511Google Scholar
  62. 62.
    H. Tsue, K. Ishibashi, S. Tokita, K. Sakai, Jpn. Unexam. Pat. Appl. Publ. 2010–174002Google Scholar
  63. 63.
    K. Ishibashi, H. Tsue, N. Sakai, S. Tokita, K. Matsui, J. Yamauchi, R. Tamura, Chem. Commun. 2812 (2008)Google Scholar
  64. 64.
    I. Despotović, Z.B. Maksić, Tetrahedron Lett. 52, 6263 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan

Personalised recommendations