Advertisement

Probe-Type Deformers

  • Shizuo Kaji
  • Gengdai Liu
Conference paper
Part of the Mathematics for Industry book series (MFI, volume 18)

Abstract

Fast and easy-to-use deformers to warp 3D space are vital tools for both modeling and animation. In this paper, we introduce interactive and easy-to-manipulate shape deformers based on interpolation of affine transformations. We devise a new interface with probes, which are metaphors of operating handles. Users are allowed to place “probes” around the target shape and tweak them interactively. The system automatically interpolates the transformations of them to produce a deformed shape. We have two versions of our deformer; one works with point clouds and the other with meshes. The former can be used to tweak the output of a particle simulation. The latter is very similar to existing mesh editing methods such as the Poisson-based mesh editing but with some improvements. We also provide the source code for our implementation as the Autodesk Maya plugin.

Keywords

Animation Modelling Deformation Affine transformation As-rigid-as-possible deformation Harmonic field 

Notes

Acknowledgments

This work was partially supported by the Core Research for Evolutional Science and Technology (CREST) Program titled “Mathematics for Computer Graphics” of the Japan Science and Technology Agency (JST). The octopus model used in this paper is courtesy of the AIM@SHAPE Shape Repository.

References

  1. 1.
    G. Matsuda, S. Kaji, H. Ochiai, Anti-commutative Dual Complex Numbers and 2D Rigid Transformation, Mathematical Progress in Expressive Image Synthesis I (Springer, Japan, 2014), pp. 131–138Google Scholar
  2. 2.
    S. Kaji, H. Ochiai, A concise parametrisation of affine transformation, http://skaji.org/files/WEB-exponential.pdf
  3. 3.
    M.S. Floater, Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Y. Lipman, D. Levin, D. Cohen-Or, Green coordinates. ACM Trans. Graph. 27, 78:1–78:10 (2008)Google Scholar
  5. 5.
    M. Alexa, D. Cohen-Or, D. Levin, As-Rigid-As-Possible Shape Interpolation, in Proceedings of the 27th Annual Conference on Computer graphics and Interactive Techniques, Proceedings of the ACM SIGGRAPH 2000 (2000), pp. 157–164Google Scholar
  6. 6.
    A. Jacobson, I. Baran, J. Popović, O. Sorkine, Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 78:1–78:8 (2011)Google Scholar
  7. 7.
    R.W. Sumner, M. Zwicker, C. Gotsman, J. Popović, Mesh-based inverse kinematics. ACM Trans. Graph. 24(3), 488–495 (2005)CrossRefGoogle Scholar
  8. 8.
    J.P. Lewis, M. Cordner, N. Fong, Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-driven Deformation, in Proceedings of the ACM SIGGRAPH 2000 (2000) pp. 165–172Google Scholar
  9. 9.
    I. Llamas, B. Kim, J. Gargus, J. Rossignac, C.D. Shaw, Twister: A Space-warp Operator for the Two-handed Editing of 3D Shapes, in Proceedings of the ACM SIGGRAPH 2003 (2003), pp. 663–668Google Scholar
  10. 10.
    S. Schaefer, T. McPhail, J. Warren, Image deformation using moving least squares. ACM Trans. Graph. (TOG) 25, 533–540 (2006)CrossRefGoogle Scholar
  11. 11.
    Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, H-Y Shum, Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph. (Proc. ACM SIGGRAPH 2004) 23(3), 644–651 (2004)Google Scholar
  12. 12.
    Y. Lipman, O. Sorkine, D. Levin, D. Cohen-Or, Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24(3), 479–487 (2005)CrossRefGoogle Scholar
  13. 13.
    O. Sorkine, M. Alexa, As-Rigid-As-Possible Surface Modeling, in Proceedings of the fifth Eurographics symposium on Geometry processing (SGP ’07), Eurographics Association (Aire-la-Ville, Switzerland, Switzerland, 2007), pp. 109–116Google Scholar
  14. 14.
    T. Igarashi, T. Moscovich, J.F. Hughes, As-Rigid-As-Possible Shape manipulation, in Proceedings of the ACM SIGGRAPH 2005 (2005), pp. 1134–1141Google Scholar
  15. 15.
    E. Chaudhry, L. You, J. Zhang, Character Skin Deformation: A Survey, in 2010 Seventh International Conference on Computer Graphics, Imaging and Visualization. IEEE (2010), pp. 41–48Google Scholar
  16. 16.
    J.R. Nieto, A. Susín, Cage Based Deformations: A Survey, Deformation Models, eds. by M.G. Hidalgo, A.M. Torres, J.V. Gomez Lecture Notes in Computational Vision and Biomechanics, vol 7 (2013)Google Scholar
  17. 17.
    J. Gain, D. Bechmann, A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph. 27(4), 107 (2008)CrossRefGoogle Scholar
  18. 18.
    L. Kavan, S. Collins, J. Zara, C. O’Sullivan, Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27(4), 105 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Botsch, O. Sorkine, On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008)CrossRefGoogle Scholar
  20. 20.
    R. Zayer, C. Rössl, Z. Karni, H.-P. Seidel, Harmonic guidance for surface deformation. Comput. Graph. forum 24(3), 601–609 (2005)CrossRefGoogle Scholar
  21. 21.
    K. Shoemake, T. Duff, Matrix Animation and Polar Decomposition, in Proceedings of the Conference on Graphics Interface ’92, eds. by K.S. Booth, A. Fournier. (Morgan Kaufmann Publishers Inc., San Francisco, 1992), pp. 258–264Google Scholar
  22. 22.
    I. Baran, J. Popović, Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26(3), 72 (2007)CrossRefGoogle Scholar
  23. 23.
    O. Dionne, M. de Lasa, Geodesic Voxel Binding for Production Character Meshes, in ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA) (2013), pp. 173–180Google Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Yamaguchi UniversityYamaguchiJapan
  2. 2.OLM Digital Inc.Setagaya-ku, TokyoJapan

Personalised recommendations