Advertisement

ppOpen-HPC: Open Source Infrastructure for Development and Execution of Large-Scale Scientific Applications on Post-Peta-Scale Supercomputers with Automatic Tuning (AT)

  • Kengo Nakajima
  • Masaki Satoh
  • Takashi Furumura
  • Hiroshi Okuda
  • Takeshi Iwashita
  • Hide Sakaguchi
  • Takahiro Katagiri
  • Masaharu Matsumoto
  • Satoshi Ohshima
  • Hideyuki Jitsumoto
  • Takashi Arakawa
  • Futoshi Mori
  • Takeshi Kitayama
  • Akihiro Ida
  • Miki Y. Matsuo
Conference paper
Part of the Mathematics for Industry book series (MFI, volume 13)

Abstract

ppOpen-HPC is an open source infrastructure for development and execution of large-scale scientific applications on post-peta-scale (pp) supercomputers with automatic tuning (AT). ppOpen-HPC focuses on parallel computers based on many-core architectures and consists of various types of libraries covering general procedures for scientific computations. The source code, developed on a PC with a single processor, is linked with these libraries, and the parallel code generated is optimized for post-peta-scale systems. In this article, recent achievements and progress of the ppOpen-HPC project are summarized.

Keywords

ppOpen-HPC Post-peta-scale systems Automatic tuning Parallel computing 

Notes

Acknowledgments

This work is supported by Core Research for Evolutional Science and Technology (CREST), the Japan Science and Technology Agency (JST), Japan.

References

  1. 1.
  2. 2.
    Nakajima, K.: ppOpen-HPC: open source infrastructure for development and execution of large-scale scientific applications on post-peta-scale supercomputers with automatic tuning (AT). In: ATIP ’12 Proceedings of the ATIP/A*CRC Workshop on Accelerator Technologies for High-Performance Computing: Does Asia Lead the Way?, ACM Digital Library (ISBN: 978-1-4503-1644-6) (2012)Google Scholar
  3. 3.
    Joint Center for Advanced High Performance Computing (JCAHPC): http://jcahpc.jp/
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Mori, F., Matsumoto, M., Furumura, T.: Performance optimization of the 3D FDM simulation of seismic wave propagation on the intel Xeon Phi coprocessor using the ppOpen-APPL/FDM library. In: Lecture Notes in Computer Science (LNCS) (in press)Google Scholar
  8. 8.
    Information Technology Center, The University of Tokyo: http://www.cc.u-tokyo.ac.jp
  9. 9.
    Matsumoto, M., Mori, F., Ohshima, S., Jitsumoto, H., Katagiri, T., Nakajima, K.: Implementation and evaluation of an AMR framework for FDM applications. Procedia Comput. Sci. 29, 936–946 (2014)CrossRefGoogle Scholar
  10. 10.
    Ida, A., Iwashita, T., Mifune, T., Takahashi, Y.: Parallel hierarchical matrices with adaptive cross approximation on symmetric multiprocessing clusters. J. Inf. Process. 22(4), 642–650 (2014)Google Scholar
  11. 11.
    Ida, A., Iwashita, T., Ohtani, M., Hirahara, K.: Improvement of hierarchical matrices with adaptive cross approximation for large-scale simulation. IPSJ Trans. Adv. Comput. Syst. 49 (in press)Google Scholar
  12. 12.
    Nishiura, D., Matsuo, M.Y., Sakaguchi, H.: ppohDEM: computational performance for open source code of the discrete element method. Comput. Phys. Commun. 185, 1486–1495 (2014)CrossRefGoogle Scholar
  13. 13.
    Arakawa, T., Inoue, T., Satoh, M.: Performance evaluation and case study of a coupling software Ppopen-MATH/MP. Procedia Comput. Sci. 29, 924–935 (2014)CrossRefGoogle Scholar
  14. 14.
    Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., Noda, A.T., Yamada, Y., Goto, D., Sawada, M., Miyoshi, T., Niwa, Y., Hara, M., Ohno, T., Iga, S., Arakawa, T., Inoue, T., Kubokawa, H.: The non-hydrostatic icosahedral atmospheric model: description and development. In: Progress in Earth and Planetary Science, pp. 1–18 (2014)Google Scholar
  15. 15.
    Hasumi, H.: Documentaion for CCSR Ocean Component Model (COCO) Version 4.0s. Center for Climate System Research, April (2007)Google Scholar
  16. 16.
    Jones, P.H.: First- and second-order conservative remapping schemes for grids in spherical coordi-nates. Mon. Weather Rev. 127, 2204–2210 (1999)CrossRefGoogle Scholar
  17. 17.
    HPCG: High Performance Conjugate Gradients: https://software.sandia.gov/hpcg/
  18. 18.
    Nakajima, K.: Optimization of serial and parallel communications for parallel geometric multigrid method. In: Proceedings of the 20th IEEE International Conference for Parallel and Distributed Systems (ICPADS 2014), pp. 25–32 (2014)Google Scholar
  19. 19.
    Monakov, A., Lokhmotov, A., Avetisyan, A.: Automatically tuning sparse matrix-vector multiplication for GPU architectures. Lect. Notes Comput. Sci. 5952, 112–125 (2010)Google Scholar
  20. 20.
    Nakajima, K.: Automatic tuning of parallel multigrid solvers using OpenMP/MPI hybrid parallel programming models. Lect. Notes Comput. Sci. 7851, 435–450 (2013)CrossRefGoogle Scholar
  21. 21.
    Katagiri, T., Ohshima, S., Matsumoto, M.: Auto-tuning of computation kernels from an FDM Code with ppOpen-AT. In: Proceedings of IEEE MCSoC2014, pp. 91–98 (2014). doi: 10.1109/MCSoC.2014.22
  22. 22.
    Jitsumoto, H., Todoroki, Y., Ishikawa, Y., Sato, M.: Grid-oriented process clustering system for partial message logging. In: Proceedings of the 4th Fault Tolerance for HPC at eXtreme Scale (FTXS) 2014, in conjunction with DSN2014 (2014)Google Scholar
  23. 23.
    Jitsumoto, H., Todoroki, Y., Sato, M.: Design and evaluations of application based fault tolerance framework with stencil model. In: G8 ESC Workshop at Kobe (2014)Google Scholar
  24. 24.
    Jitsumoto, H., Kamoshida, Y.: Application-level checkpoint/restart framework with optimal checkpoint interval. In: HPC in Asia Workshop Poster Session at ISC’13 (2013)Google Scholar
  25. 25.
    Katagiri, T., Kise, K., Honda, H., Yuba, T.: FIBER: a general framework for auto-tuning software. Proc. ISHPC-V, Lect. Notes Comput. Sci. 2858, 146–159 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Kengo Nakajima
    • 1
  • Masaki Satoh
    • 1
  • Takashi Furumura
    • 1
  • Hiroshi Okuda
    • 1
  • Takeshi Iwashita
    • 2
  • Hide Sakaguchi
    • 3
  • Takahiro Katagiri
    • 1
  • Masaharu Matsumoto
    • 1
  • Satoshi Ohshima
    • 1
  • Hideyuki Jitsumoto
    • 4
  • Takashi Arakawa
    • 5
  • Futoshi Mori
    • 1
  • Takeshi Kitayama
    • 1
  • Akihiro Ida
    • 6
  • Miki Y. Matsuo
    • 3
  1. 1.The University of TokyoTokyoJapan
  2. 2.Hokkaido UniversityHokkaidoJapan
  3. 3.JAMSTECKanagawaJapan
  4. 4.Tokyo Institute of TechnologyTokyoJapan
  5. 5.RISTTokyoJapan
  6. 6.Kyoto UniversityKyotoJapan

Personalised recommendations