High-throughput Measurements of Single Cell Rheology by Atomic Force Microscopy

  • Kaori Kuribayashi-Shigetomi
  • Ryosuke Takahashi
  • Agus Subagyo
  • Kazuhisa Sueoka
  • Takaharu OkajimaEmail author


The compliant mechanical properties of single cells have been extensively investigated and these properties are known to exhibit a strong dependence on the surrounding environments and also cell types, functions and conditions. An understanding of the cell behavior is important for applications of tissue engineering. Accurate rheological measurements are essential to elucidate the mechanisms of cell integrity and fluidity and are also key to mechanically identifying and separating single cells for cellular and tissue engineering. Of the various existing nano- and micro-rheology techniques, atomic force microscopy (AFM) shows great potential as a minimally invasive method. AFM allows mechanical measurements to be performed without the need for chemical modifications, via nano-scale contact between the AFM probe and the cell surface. In this chapter, we describe a recent advance in which micro-fabricated substrates are used for high-speed, automated AFM rheological measurements on size- and position-controlled cells.


Atomic force microscopy Micro-fabricated substrates Cell rheology Single cell analysis Complex shear modulus 


  1. 1.
    Morris VJ, Kirby AR, Gunning AP (2009) Atomic force microscopy for biologists, 2nd edn. Imperial College Press, LondonGoogle Scholar
  2. 2.
    Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Käs J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88 (5):3689–3698CrossRefGoogle Scholar
  3. 3.
    Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783CrossRefGoogle Scholar
  4. 4.
    Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, Hyotyla JT, Aebi U, Bentires-Alj M, Lim RYH, Schoenenberger CA (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7(11):757–765CrossRefGoogle Scholar
  5. 5.
    Gossett DR, Tse HT, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Di Carlo D (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109(20):7630–7635CrossRefGoogle Scholar
  6. 6.
    Singhvi R, Kumar A, Lopez G, Stephanopoulos G, Wang D, Whitesides G, Ingber D (1994) Engineering cell shape and function. Science 264:696–698.CrossRefGoogle Scholar
  7. 7.
    Kandere-Grzybowska K, Campbell C, Komarova Y, Grzybowski BA, Borisy GG (2005) Molecular dynamics imaging in micropatterned living cells. Nat Methods 2(10):739–741CrossRefGoogle Scholar
  8. 8.
    Hiratsuka S, Mizutani Y, Tsuchiya M, Kawahara K, Tokumoto H, Okajima T (2009) The number distribution of complex shear modulus of single cells measured by atomic force microscopy. Ultramicroscopy 109:937–941CrossRefGoogle Scholar
  9. 9.
    Cai P, Mizutani Y, Tsuchiya M, Maloney JM, Fabry B, Van Vliet KJ, Okajima T (2013) Quantifying cell-to-cell variation in power-law rheology. Biophys J 105(5):1093–1102CrossRefGoogle Scholar
  10. 10.
    Takahashi R, Ichikawa S, Subagyo A, Sueoka K, Okajima T (2014) Atomic force microscopy measurements of mechanical properties of single cells patterned by microcontact printing. Adv Robot 28:449–455CrossRefGoogle Scholar
  11. 11.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428CrossRefGoogle Scholar
  12. 12.
    Théry M, Pépin A, Dressaire E, Chen Y, Bornens M (2006) Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motil Cytoskeleton 63(6):341–355CrossRefGoogle Scholar
  13. 13.
    Bhatia S, Yarmush M, Toner M (1997) Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J Biomed Mater Res 34:189–199CrossRefGoogle Scholar
  14. 14.
    Kuribayashi K, Tsuda Y, Nakamura H, Takeuchi S (2010) Micro-patterning of phosphorylcholine-based polymers in a microfluidic channel. Sens Actuators B 149(1):177–183CrossRefGoogle Scholar
  15. 15.
    Tseng Q, Wang I, Duchemin-Pelletier E, Azioune A, Carpi N, Gao J, Filhol O, Piel M, Théry M, Balland M (2011) A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab Chip 11(13):2231–2240CrossRefGoogle Scholar
  16. 16.
    Carter S (1967) Haptotactic islands: a method of confining single cells to study individual cell reactions and clone formation. Exp Cell Res 48:189–193CrossRefGoogle Scholar
  17. 17.
    Selvarasah S, Chao S, Chen C, Sridhar S, Busnaina A, Khademhosseini A, Dokmecia M (2008) A reusable high aspect ratio parylene-C shadow mask technology for diverse micro-patterning applications. Sens Actuators A 145–146(1):306–315CrossRefGoogle Scholar
  18. 18.
    Folch A, Toner M (2000) Microengineering of cellular interactions. Annu Rev Biomed Eng 02:227–256CrossRefGoogle Scholar
  19. 19.
    Kuribayashi-Shigetomi K, Onoe H, Takeuchi S (2012) Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force. PLoS One 7(12):e51085CrossRefGoogle Scholar
  20. 20.
    Teshima T, Onoe H, Kuribayashi-Shigetomi K, Aonuma H, Kamiya K, Ishihara H, Kanuka H, Takeuchi S (2014) Parylene mobile microplates integrated with an enzymatic release and handling of single adherent cells. Small 10(5):912–921CrossRefGoogle Scholar
  21. 21.
    Radmacher M, Tillmann RW, Fritz M, Gaub HE (1992) From molecules to cells – imaging soft samples with the atomic force microscope. Science 257(5078):1900–1905CrossRefGoogle Scholar
  22. 22.
    Radmacher M, Tilmann RW, Gaub HE (1993) Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys J 64(3):735–742CrossRefGoogle Scholar
  23. 23.
    Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, Farre R, Navajas D (2003) Microrheology of Human lung epithelial cells measured by atomic force microscopy. Biophys J 84:2071–2079CrossRefGoogle Scholar
  24. 24.
    Mahaffy RE, Park S, Gerde E, Kas J, Shih CK (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86:1777–1793CrossRefGoogle Scholar
  25. 25.
    Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353:239–241CrossRefGoogle Scholar
  26. 26.
    Landau LD, Lifshiz EM (1986) Theory of elasticity, 3rd edn. Pergamon Press, OxfordGoogle Scholar
  27. 27.
    Alcaraz J, Buscemi L, Puig-de-Morales M, Colchero J, Baro A, Navajas D (2002) Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir 18:716–721CrossRefGoogle Scholar
  28. 28.
    Balland M, Desprat N, Icard D, Fereol S, Asnacios A, Browaeys J, Henon S, Gallet F (2006) Power laws in microrheology experiments on living cells: comparative analysis and modeling. Phys Rev E 74(2 Pt 1):021911Google Scholar
  29. 29.
    Massiera G, Van Citters KM, Biancaniello PL, Crocker JC (2007) Mechanics of single cells: rheology, time depndence, and fluctuations. Biophys J 93(10):3703–3713CrossRefGoogle Scholar
  30. 30.
    Desprat N, Richert A, Simeon J, Asnacios A (2005) Creep function of a single living cell. Biophys J 88(3):2224–2233CrossRefGoogle Scholar
  31. 31.
    Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87:148102Google Scholar
  32. 32.
    Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Taback NA, Millet EJ, Fredberg JJ (2003) Time scale and other invariants of integrative mechanical behavior in living cells. Phys Rev E 68:041914.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Kaori Kuribayashi-Shigetomi
    • 1
  • Ryosuke Takahashi
    • 1
  • Agus Subagyo
    • 1
  • Kazuhisa Sueoka
    • 1
  • Takaharu Okajima
    • 1
    Email author
  1. 1.Graduate School of Information Science & TechnologyHokkaido UniversitySapporoJapan

Personalised recommendations