Skip to main content

Environmental Stresses to Which Yeast Cells Are Exposed During Bioethanol Production from Biomass

  • Chapter
  • First Online:

Abstract

Bioethanol is one of the most important renewable fuels for the reduction of global warming effects and environmental damage caused by the worldwide utilization of fossil fuels. Yeasts such as Saccharomyces cerevisiae are frequently used for bioethanol production from mono- or disaccharides derived from biomass, including sugar cane, corn, and lignocellulosic materials. During bioethanol production, yeast cells are exposed to various environmental stresses including chemical, temperature, oxidative, and acid stresses. The development of yeast strains tolerant to such environmental stresses must improve the bioethanol production process. This chapter focuses on the environmental stresses to which yeast cells are exposed during bioethanol production. We also discuss the exploration and breeding of stress-tolerant yeast strains and their application to bioethanol production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85:861–867

    Article  CAS  PubMed  Google Scholar 

  • Akada R (2002) Genetically modified industrial yeast ready for application. J Biosci Bioeng 94(6):536–544

    Article  CAS  PubMed  Google Scholar 

  • Ando A, Suzuki C, Shima J (2005) Survival of genetically modified and self-cloned strains of commercial baker’s yeast in simulated natural environments: environmental risk assessment. Appl Environ Microbiol 71(11):7075–7082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ando A, Tanaka F, Murata Y, Takagi H, Shima J (2006) Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae. FEMS Yeast Res 6(2):249–267

    Article  CAS  PubMed  Google Scholar 

  • Ando A, Nakamura T, Murata Y, Takagi H, Shima J (2007) Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. FEMS Yeast Res 7(2):244–253

    Article  CAS  PubMed  Google Scholar 

  • Aquarone E (1960) Penicillin and tetracycline as contamination control agents in alcoholic fermentation of sugar cane molasses. Appl Microbiol 8:263–268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15(13):1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Conserv Manag 52:858–875

    Article  CAS  Google Scholar 

  • Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energ Combust 34(5):551–573

    Article  CAS  Google Scholar 

  • Banat IM, Marchant R (1995) Characterization and potential industrial applications of 5 novel, thermotolerant, fermentative, yeast strains. World J Microbiol Biotechnol 11:304–306

    Article  PubMed  Google Scholar 

  • Bayrock DP, Thomas KC, Ingledew WM (2003) Control of Lactobacillus contaminants in continuous fuel ethanol fermentations by constant or pulsed addition of penicillin G. Appl Microbiol Biotechnol 62(5–6):498–502

    Article  CAS  PubMed  Google Scholar 

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774

    Article  CAS  PubMed  Google Scholar 

  • Chang IS, Kim BH, Shin PK (1997) Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation. Appl Environ Microbiol 63(1):1–6

    PubMed Central  CAS  PubMed  Google Scholar 

  • Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14(16):1471–1510

    Article  CAS  PubMed  Google Scholar 

  • Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J (2008) Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol Biofuels 1(1):3

    Article  PubMed Central  PubMed  Google Scholar 

  • Endo A, Nakamura T, Shima J (2009) Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. FEMS Microbiol Lett 299(1):95–99

    Article  CAS  PubMed  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354

    Article  CAS  PubMed  Google Scholar 

  • Giaever G, Shoemaker DD, Jones TW, Liang H, Winzeler EA, Astromoff A, Davis RW (1999) Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat Genet 21(3):278–283

    Article  CAS  PubMed  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–991

    Article  CAS  PubMed  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol Curr Opin Chem Biol 10(2):141–146

    Article  CAS  Google Scholar 

  • Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953

    Article  PubMed  Google Scholar 

  • Haitani Y, Tanaka K, Yamamoto M, Nakamura T, Ando A, Ogawa J, Shima J (2012) Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis. J Biosci Bioeng 114(6):648–651

    Article  CAS  PubMed  Google Scholar 

  • Hasunuma T, Kondo A (2012) Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30(6):1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Herrero E (2005) Evolutionary relationships between Saccharomyces cerevisiae and other fungal species as determined from genome comparisons. Rev Iberoam Micol 22(4):217–222

    Article  PubMed  Google Scholar 

  • Higgins VJ, Alic N, Thorpe GW, Breitenbach M, Larsson V, Dawes IW (2002) Phenotypic analysis of gene deletant strains for sensitivity to oxidative stress. Yeast 19(3):203–214

    Article  CAS  PubMed  Google Scholar 

  • Hou X (2012) Anaerobic xylose fermentation by Spathaspora passalidarum. Appl Microbiol Biotechnol 94(1):205–214

    Article  CAS  PubMed  Google Scholar 

  • Hynes SH, Kjarsgaard DM, Thomas KC, Ingledew WM (1997) Use of virginiamycin to control the growth of lactic acid bacteria during alcohol fermentation. J Ind Microbiol Biotechnol 18(4):284–291

    Article  CAS  PubMed  Google Scholar 

  • Inaba T, Watanabe D, Yoshiyama Y, Tanaka K, Ogawa J, Takagi H, Shimoi H, Shima J (2013) An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses. AMB Express 3:74

    Article  PubMed Central  PubMed  Google Scholar 

  • Ishchuk OP, Voronovsky AY, Stasyk OV, Gayda GZ, Gonchar MV, Abbas CA, Sibirny AA (2008) Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Res 8:1164–1174

    Article  CAS  PubMed  Google Scholar 

  • Iwaki A, Ohnuki S, Suga Y, Izawa S, Ohya Y (2013) Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: application and validation of high-content, image-based profiling. PLoS One 8(4):e61748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14(16):1511–1527

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25(3):319–326

    Article  CAS  PubMed  Google Scholar 

  • Kaino T, Tateiwa T, Mizukami-Murata S, Shima J, Takagi H (2008) Self-cloning baker’s yeasts that accumulate proline enhance freeze tolerance in doughs. Appl Environ Microbiol 74(18):5845–5849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan QA, Hadi SM (1994) Inactivation and repair of bacteriophage lambda by furfural. Biochem Mol Biol Int 32(2):379–385

    CAS  PubMed  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26:361–375

    Article  Google Scholar 

  • Kim D, Hahn JS (2013) Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microbiol 79(16):5069–5077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim J-H, Block DE, Mills DA (2010) Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 88:1077–1085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26

    Article  CAS  PubMed  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang YHP (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sust Energ Rev 15:4950–4962

    Article  CAS  Google Scholar 

  • Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009) Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl Microbiol Biotechnol 82:1037–1047

    Article  CAS  PubMed  Google Scholar 

  • Makanjuola DB, Tymon A, Springham DG (1992) Some effects of lactic acid bacteria on laboratory-scale yeast fermentations. Enzyme Microb Technol 14:350–357

    Article  CAS  Google Scholar 

  • Modig T, Liden G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363(Pt 3):769–776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190(4):1157–1195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narendranath NV, Hynes SH, Thomas KC, Ingledew WM (1997) Effects of lactobacilli on yeast-catalyzed ethanol fermentations. Appl Environ Microbiol 63(11):4158–4163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen TT, Iwaki A, Ohya Y, Izawa S (2014) Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J Biosci Bioeng 117(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Nishino N, Hattori H, Kishida Y (2007) Alcoholic fermentation and its prevention by Lactobacillus buchneri in whole crop rice silage. Lett Appl Microbiol 44(5):538–543

    Article  CAS  PubMed  Google Scholar 

  • Nonklang S, Abdel-Banat BMA, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74:7514–7521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okada N, Ogawa J, Shima J (2014) Comprehensive analysis of genes involved in the oxidative stress tolerance using yeast heterozygous deletion collection. FEMS Yeast Res 14(3):425–434. doi:10.1111/1567-1364.12136

    Article  CAS  PubMed  Google Scholar 

  • Oliva-Neto PD, Yokoya F (1998) Effect of 3,4,4′-trichlorocarbanilide on growth of lactic acid bacteria contaminants in alcoholic fermentation. Bioresour Technol 63(1):17–21

    Article  CAS  Google Scholar 

  • Olsson L, Hahn-Hagerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18(5):312–331

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    Article  CAS  Google Scholar 

  • Piper PW (2011) Resistance of yeasts to weak organic acid food preservatives. Adv Appl Microbiol 77:97–113

    Article  CAS  PubMed  Google Scholar 

  • Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi LS, Kosaka T, Yamada M (2011) Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 90:1573–1586

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  CAS  PubMed  Google Scholar 

  • Saithong P, Nakamura T, Shima J (2009) Prevention of bacterial contamination using acetate-tolerant Schizosaccharomyces pombe during bioethanol production from molasses. J Biosci Bioeng 108(3):216–219

    Article  CAS  PubMed  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295

    Article  CAS  PubMed  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  • Shima J, Takagi H (2009) Stress-tolerance of baker’s-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Biotechnol Appl Biochem 53(Pt 3):155–164

    Article  CAS  PubMed  Google Scholar 

  • Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31(9):401–408

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Ishii Y, Ogawa J, Shima J (2012) Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 78(22):8161–8163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanimura A, Nakamura T, Watanabe I, Ogawa J, Shima J (2012) Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. Springerplus 1:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomas KC, Hynes SH, Ingledew WM (2001) Effect of lactobacilli on yeast growth, viability and batch and semi-continuous alcoholic fermentation of corn mash. J Appl Microbiol 90(5):819–828

    Article  CAS  PubMed  Google Scholar 

  • Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW (2004) Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc Natl Acad Sci U S A 101(17):6564–6569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Visser W, Scheffers WA, Batenburg-van der Vegte WH, van Dijken JP (1990) Oxygen requirements of yeasts. Appl Environ Microbiol 56(12):3785–3792

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe I, Nakamura T, Shima J (2008) A strategy to prevent the occurrence of Lactobacillus strains using lactate-tolerant yeast Candida glabrata in bioethanol production. J Ind Microbiol Biotechnol 35(10):1117–1122

    Article  CAS  PubMed  Google Scholar 

  • Watanabe I, Nakamura T, Shima J (2009) Characterization of a spontaneous flocculation mutant derived from Candida glabrata: a useful strain for bioethanol production. J Biosci Bioeng 107(4):379–382

    Article  CAS  PubMed  Google Scholar 

  • Watanabe I, Nakamura T, Shima J (2010) Strategy for simultaneous saccharification and fermentation using a respiratory-deficient mutant of Candida glabrata for bioethanol production. J Biosci Bioeng 110(2):176–179

    Article  CAS  PubMed  Google Scholar 

  • William RG, Carl AW (1986) Effects of sodium meta bisulfite on diffusion fermentation of fodder beets for fuel ethanol production. Biotechnol Bioeng 30(7):909–916

    Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56(1-2):17–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Institute for Fermentation, Osaka (IFO); and by grants from the Ministry of Agriculture, Forestry, and Fisheries of Japan (Rural Biomass Research Project, BEC-BC050, BEC-BC051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Shima, J., Nakamura, T. (2015). Environmental Stresses to Which Yeast Cells Are Exposed During Bioethanol Production from Biomass. In: Takagi, H., Kitagaki, H. (eds) Stress Biology of Yeasts and Fungi. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55248-2_6

Download citation

Publish with us

Policies and ethics