Advertisement

Editing Cultured Human Cells: From Cell Lines to iPS Cells

  • Hongmei Lisa Li
  • Akitsu HottaEmail author
Chapter

Abstract

The human genome is complex, and the functions of many genes and specific genomic elements have not been fully explored. Cultured human cells, from conventional cell lines to iPS cells, are valuable tools that are used to study human genomics in the laboratory; however, the gene targeting efficiencies have generally been low in most of these human cells, making it difficult to assess the functions of these genes. The development of custom-engineered nucleases highlights the possibility of using different approaches to pursue functional genomic studies in cultured human cells. In this chapter, we review the chronological advances made in ZFNs, TALENs and CRISPR/Cas9 systems for gene disruption, locus-specific integration and gene correction. In addition, we summarize the emerging applications of tailor-made DNA binding modules for controlling the transcriptional state, modifying epigenetic marks and for live-cell imaging. The remaining challenges associated with increasing the target specificity, delivery and safety are also discussed.

Keywords

CRISPR • ES (Embryonic Stem) cells Gene correction Gene therapy Genome engineering Human cells iPS (induced pluripotent stem) cells TALENs ZFNs 

References

  1. Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19:1111–1113PubMedCentralPubMedGoogle Scholar
  2. Bae KH, Kwon YD, Shin HC, Hwang MS, Ryu EH, Park KS, Yang HY, Lee DK, Lee Y, Park J, Kwon HS, Kim HW, Yeh BI, Lee HW, Sohn SH, Yoon J, Seol W, Kim JS (2003) Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol 21:275–280PubMedGoogle Scholar
  3. Bhatia S, Pilquil C, Roth-Albin I, Draper JS (2013) Demarcation of stable subpopulations within the pluripotent hESC compartment. PLoS One 8:e57276PubMedCentralPubMedGoogle Scholar
  4. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175PubMedCentralPubMedGoogle Scholar
  5. Blancafort P, Segal DJ, Barbas CF 3rd (2004) Designing transcription factor architectures for drug discovery. Mol Pharmacol 66:1361–1371PubMedGoogle Scholar
  6. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512PubMedGoogle Scholar
  7. Boissel S, Jarjour J, Astrakhan A, Adey A, Gouble A, Duchateau P, Shendure J, Stoddard B, Certo M, Baker D, Scharenberg A (2013) MegaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res 42:2591–2601PubMedCentralPubMedGoogle Scholar
  8. Buerstedde JM, Takeda S (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67:179–188PubMedGoogle Scholar
  9. Capecchi MR (2001) Generating mice with targeted mutations. Nat Med 7:1086–1090PubMedGoogle Scholar
  10. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82PubMedCentralPubMedGoogle Scholar
  11. Chames P, Epinat J-C, Guillier S, Patin A, Lacroix E, Pâques F (2005) In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination. Nucleic Acids Res 33:e178PubMedCentralPubMedGoogle Scholar
  12. Chang C-J, Bouhassira EE (2012) Zinc-finger nuclease-mediated correction of α-thalassemia in iPS cells. Blood 120:3906–3914PubMedCentralPubMedGoogle Scholar
  13. Chapdelaine P, Pichavant C, Rousseau J, Pâques F, Tremblay JP (2010) Meganucleases can restore the reading frame of a mutated dystrophin. Gene Ther 17:846–858PubMedGoogle Scholar
  14. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li G-W, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491PubMedCentralPubMedGoogle Scholar
  15. Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23:1163–1171PubMedCentralPubMedGoogle Scholar
  16. Chevalier BS, Monnat RJ Jr, Stoddard BL (2001) The homing endonuclease I-CreI uses three metals, one of which is shared between the two active sites. Nat Struct Biol 8:312–316PubMedGoogle Scholar
  17. Cho S-W, Kim S, Kim JM, Kim J-S (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232PubMedGoogle Scholar
  18. Choi S, Kim Y, Shim J, Park J, Wang R, Leach S, Liu J, Deng C, Ye Z, Jang Y (2013) Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 57:2458–2468PubMedCentralPubMedGoogle Scholar
  19. Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973PubMedCentralPubMedGoogle Scholar
  20. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761PubMedCentralPubMedGoogle Scholar
  21. Coluccio A, Miselli F, Lombardo A, Marconi A, Malagoli Tagliazucchi G, Gonçalves MA, Pincelli C, Maruggi G, Del Rio M, Naldini L, Larcher F, Mavilio F, Recchia A (2013) Targeted gene addition in human epithelial stem cells by zinc-finger nuclease-mediated homologous recombination. Mol ther 21:1695–1704PubMedCentralPubMedGoogle Scholar
  22. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedCentralPubMedGoogle Scholar
  23. Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung JK, Joung JK, Cathomen T (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther 16:352–358PubMedGoogle Scholar
  24. Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41:9584–9592PubMedCentralPubMedGoogle Scholar
  25. Davis RP, Ng ES, Costa M, Mossman AK, Sourris K, Elefanty AG, Stanley EG (2008) Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111:1876–1884PubMedGoogle Scholar
  26. DeKelver R, Choi V, Moehle E, Paschon D, Hockemeyer D, Meijsing S, Sancak Y, Cui X, Steine E, Miller J, Tam P, Bartsevich V, Meng X, Rupniewski I, Gopalan S, Sun H, Pitz K, Rock J, Zhang L, Davis G, Rebar E, Cheeseman I, Yamamoto K, Sabatini D, Jaenisch R, Gregory P, Urnov F (2010) Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res 20:1133–1142PubMedCentralPubMedGoogle Scholar
  27. Ding Q, Lee Y-K, Schaefer EAK, Peters DT, Veres A, Kim K, Kuperwasser N, Motola DL, Meissner TB, Hendriks WT, Trevisan M, Gupta RM, Moisan A, Banks E, Friesen M, Schinzel RT, Xia F, Tang A, Xia Y, Figueroa E, Wann A, Ahfeldt T, Daheron L, Zhang F, Rubin LL, Peng LF, Chung RT, Musunuru K, Cowan CA (2013a) A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12:238–251PubMedCentralPubMedGoogle Scholar
  28. Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K (2013b) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12:393–394PubMedCentralPubMedGoogle Scholar
  29. Dreier B, Segal DJ, Barbas CF 3rd (2000) Insights into the molecular recognition of the 5′-GNN-3′ family of DNA sequences by zinc finger domains. J Mol Biol 303:489–502PubMedGoogle Scholar
  30. Dreier B, Beerli RR, Segal DJ, Flippin JD, Barbas CF 3rd (2001) Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 276:29466–29478PubMedGoogle Scholar
  31. Ebina H, Misawa N, Kanemura Y, Koyanagi Y (2013) Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3:2510PubMedCentralPubMedGoogle Scholar
  32. Epinat J-C, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Pâques F, Lacroix E (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31:2952–2962PubMedCentralPubMedGoogle Scholar
  33. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedGoogle Scholar
  34. Folger KR, Wong EA, Wahl G, Capecchi MR (1982) Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol Cell Biol 2:1372–1387PubMedCentralPubMedGoogle Scholar
  35. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284PubMedCentralPubMedGoogle Scholar
  36. Fujita T, Fujii H (2013) Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem Biophys Res Commun 439:132–136PubMedGoogle Scholar
  37. Fujita T, Asano Y, Ohtsuka J, Takada Y, Saito K, Ohki R, Fujii H (2013) Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP). Sci Rep 3:3171PubMedCentralPubMedGoogle Scholar
  38. Garçon L, Ge J, Manjunath SH, Mills JA, Apicella M, Parikh S, Sullivan LM, Podsakoff GM, Gadue P, French DL, Mason PJ, Bessler M, Weiss MJ (2013) Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from diamond Blackfan anemia patients. Blood 122:912–921PubMedCentralPubMedGoogle Scholar
  39. Genovese P, Schiroli G, Escobar G, Di Tomaso T, Firrito C, Calabria A, Moi D, Mazzieri R, Bonini C, Holmes MC, Gregory PD, van der Burg M, Gentner B, Montini E, Lombardo A, Naldini L (2014) Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510:235–240PubMedCentralPubMedGoogle Scholar
  40. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451PubMedCentralPubMedGoogle Scholar
  41. Gonzalez F, Zhu Z, Shi ZD, Lelli K, Verma N, Li QV, Huangfu D (2014) An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15:1–12Google Scholar
  42. Grizot S, Smith J, Daboussi F, Prieto J, Redondo P, Merino N, Villate M, Thomas S, Lemaire L, Montoya G, Blanco FJ, Pâques F, Duchateau P (2009) Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Res 37Google Scholar
  43. Grizot S, Epinat J-C, Thomas S, Duclert A, Rolland S, Pâques F, Duchateau P (2010) Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds. Nucleic Acids Res 38:2006–2018PubMedCentralPubMedGoogle Scholar
  44. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857PubMedCentralPubMedGoogle Scholar
  45. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734PubMedCentralPubMedGoogle Scholar
  46. Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, Recchia A, Cathomen T, Gonçalves MAFV (2013) Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41:e63PubMedCentralPubMedGoogle Scholar
  47. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC, Cannon PM (2010) Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28:839–847PubMedCentralPubMedGoogle Scholar
  48. Hotta A, Cheung AY, Farra N, Vijayaragavan K, Seguin CA, Draper JS, Pasceri P, Maksakova IA, Mager DL, Rossant J, Bhatia M, Ellis J (2009) Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat Methods 6:370–376PubMedGoogle Scholar
  49. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832PubMedCentralPubMedGoogle Scholar
  50. Isalan M, Klug A, Choo Y (1998) Comprehensive DNA recognition through concerted interactions from adjacent zinc fingers. Biochemistry 37:12026–12033PubMedGoogle Scholar
  51. Jaenisch R (1977) Germ line integration of moloney leukemia virus: effect of homozygosity at the m-mulV locus. Cell 12:691–696PubMedGoogle Scholar
  52. Jia J, Jin Y, Bian T, Wu D, Yang L, Terada N, Wu W, Jin S (2014) Bacterial delivery of TALEN proteins for human genome editing. PLoS One 9:e91547PubMedCentralPubMedGoogle Scholar
  53. Jiang J, Jing Y, Cost G, Chiang J, Kolpa H, Cotton A, Carone D, Carone B, Shivak D, Guschin D, Pearl J, Rebar E, Byron M, Gregory P, Brown C, Urnov F, Hall L, Lawrence J (2013a) Translating dosage compensation to trisomy 21. Nature 500:296–300PubMedGoogle Scholar
  54. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013b) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239PubMedCentralPubMedGoogle Scholar
  55. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedGoogle Scholar
  56. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. Elife 2:e00471PubMedCentralPubMedGoogle Scholar
  57. Kim JA, Cho K, Shin MS, Lee WG, Jung N, Chung C, Chang JK (2008) A novel electroporation method using a capillary and wire-type electrode. Biosens Bioelectron 23:1353–1360PubMedGoogle Scholar
  58. Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS (2009) Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 19:1279–1288PubMedCentralPubMedGoogle Scholar
  59. Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, Kim S, Lee C, Jeong E, Chung E, Kim D, Lee MS, Go EM, Song HJ, Kim H, Cho N, Bang D, Kim S, Kim J-S (2013a) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31:251–258PubMedGoogle Scholar
  60. Kim Y-K, Wee G, Park J, Kim J, Baek D, Kim J-S, Kim VN (2013b) TALEN-based knockout library for human microRNAs. Nat Struct Mol Biol 20:1458–1464PubMedGoogle Scholar
  61. Kim S, Kim D, Cho S-W, Kim J, Kim J-S (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019PubMedCentralPubMedGoogle Scholar
  62. Koike-Yusa H, Li Y, Tan E-P, Velasco-Herrera MDC, Yusa K (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32:267–273PubMedGoogle Scholar
  63. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476PubMedGoogle Scholar
  64. Lee HJ, Kweon J, Kim E, Kim S, Kim J-S (2012) Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res 22:539–548PubMedCentralPubMedGoogle Scholar
  65. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, Murphy SL, Finn JD, Khazi FR, Zhou S, Paschon DE, Rebar EJ, Bushman FD, Gregory PD, Holmes MC, High KA (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–221PubMedCentralPubMedGoogle Scholar
  66. Li S-J, Shi R-Z, Bai Y-P, Hong D, Yang W, Wang X, Mo L, Zhang G-G (2013) Targeted introduction of tissue plasminogen activator (TPA) at the AAVS1 locus in mesenchymal stem cells (MSCs) and its stable and effective expression. Biochem Biophys Res Commun 437:74–78PubMedGoogle Scholar
  67. Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42:7473–7485Google Scholar
  68. Lisa Li H, Nakano T, Hotta A (2014) Genetic correction using engineered nucleases for gene therapy applications. Dev Growth Differ 56:63–77Google Scholar
  69. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee Y-L, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25:1298–1306PubMedGoogle Scholar
  70. Lombardo A, Cesana D, Genovese P, Di Stefano B, Provasi E, Colombo DF, Neri M, Magnani Z, Cantore A, Lo Riso P, Damo M, Pello OM, Holmes MC, Gregory PD, Gritti A, Broccoli V, Bonini C, Naldini L (2011) Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods 8:861–869PubMedGoogle Scholar
  71. Ma H, Reyes-Gutierrez P, Pederson T (2013) Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. Proc Natl Acad Sci U S A 110:21048–21053PubMedCentralPubMedGoogle Scholar
  72. Ma N, Liao B, Zhang H, Wang L, Shan Y, Xue Y, Huang K, Chen S, Zhou X, Chen Y, Pei D, Pan G (2014) Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced pluripotent stem cells. J Biol Chem 288:34671–34679Google Scholar
  73. Mae S, Shono A, Shiota F, Yasuno T, Kajiwara M, Gotoda-Nishimura N, Arai S, Sato-Otubo A, Toyoda T, Takahashi K, Nakayama N, Cowan CA, Aoi T, Ogawa S, McMahon AP, Yamanaka S, Osafune K (2013) Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun 4:1367PubMedGoogle Scholar
  74. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK (2008) Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301PubMedCentralPubMedGoogle Scholar
  75. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013a) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977–979PubMedCentralPubMedGoogle Scholar
  76. Maeder ML, Linder SJ, Reyon D, Angstman JF, Fu Y, Sander JD, Joung JK (2013b) Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 10(3):243–245PubMedCentralPubMedGoogle Scholar
  77. Maggio I, Holkers M, Liu J, Janssen JM, Chen X, Gonçalves MAFV (2014) Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci Rep 4:5105PubMedCentralPubMedGoogle Scholar
  78. Maier DA, Brennan AL, Jiang S, Binder-Scholl GK, Lee G, Plesa G, Zheng Z, Cotte J, Carpenito C, Wood T, Spratt SK, Ando D, Gregory P, Holmes MC, Perez EE, Riley JL, Carroll RG, June CH, Levine BL (2013) Efficient clinical scale gene modification via zinc finger nuclease-targeted disruption of the HIV co-receptor CCR5. Hum Gene Ther 24:245–258PubMedCentralPubMedGoogle Scholar
  79. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013a) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838PubMedGoogle Scholar
  80. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013b) RNA-guided human genome engineering via Cas9. Science 339:823–826PubMedCentralPubMedGoogle Scholar
  81. Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, Bernstein BE (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31:1133–1136PubMedGoogle Scholar
  82. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148PubMedGoogle Scholar
  83. Miyanari Y, Ziegler-Birling C, Torres-Padilla ME (2013) Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol 20:1321–1324PubMedGoogle Scholar
  84. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501PubMedGoogle Scholar
  85. Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–9293PubMedCentralPubMedGoogle Scholar
  86. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845PubMedCentralPubMedGoogle Scholar
  87. Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ, Xia L, DeFeo AP, Gabriel R, Schmidt M, von Kalle C, Carlson DF, Maeder ML, Joung JK, Wagner JE, Voytas DF, Blazar BR, Tolar J (2013) TALEN-based gene correction for epidermolysis bullosa. Mol Ther 21:1151–1159PubMedCentralPubMedGoogle Scholar
  88. Ousterout DG, Perez-Pinera P, Thakore PI, Kabadi AM, Brown MT, Qin X, Fedrigo O, Mouly V, Tremblay JP, Gersbach CA (2013) Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther 21:1718–1726PubMedCentralPubMedGoogle Scholar
  89. Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340PubMedGoogle Scholar
  90. Park CY, Kim J, Kweon J, Son JS, Lee JS, Yoo JE, Cho SR, Kim JH, Kim JS, Kim DW (2014) Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc Natl Acad Sci U S A 111:9253–9258PubMedCentralPubMedGoogle Scholar
  91. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee Y-L, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26:808–816PubMedCentralPubMedGoogle Scholar
  92. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10:973–976PubMedCentralPubMedGoogle Scholar
  93. Phang R-Z, Tay FC, Goh S-L, Lau C-H, Zhu H, Tan W-K, Liang Q, Chen C, Du S, Li Z, Tay JC-K, Wu C, Zeng J, Fan W, Toh HC, Wang S (2013) Zinc finger nuclease-expressing baculoviral vectors mediate targeted genome integration of reprogramming factor genes to facilitate the generation of human induced pluripotent stem cells. Stem Cells Transl Med 2:935–945PubMedCentralPubMedGoogle Scholar
  94. Provasi E, Genovese P, Lombardo A, Magnani Z, Liu P, Reik A, Chu V, Paschon D, Zhang L, Kuball J, Camisa B, Bondanza A, Casorati G, Ponzoni M, Ciceri F, Bordignon C, Greenberg P, Holmes M, Gregory P, Naldini L, Bonini C (2012) Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med 18:807–815PubMedGoogle Scholar
  95. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183PubMedCentralPubMedGoogle Scholar
  96. Qian K, Huang CL, Chen H, Blackbourn LW 4th, Chen Y, Cao J, Yao L, Sauvey C, Du Z, Zhang SC (2014) A simple and efficient system for regulating gene expression in human pluripotent stem cells and derivatives. Stem Cells 32:1230–1238PubMedGoogle Scholar
  97. Ramakrishna S, Kwaku Dad A-B, Beloor J, Gopalappa R, Lee S-K, Kim H (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24:1020–1027PubMedCentralPubMedGoogle Scholar
  98. Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389PubMedGoogle Scholar
  99. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465PubMedCentralPubMedGoogle Scholar
  100. Río P, Baños R, Lombardo A, Quintana-Bustamante O, Alvarez L, Garate Z, Genovese P, Almarza E, Valeri A, Díez B, Navarro S, Torres Y, Trujillo JP, Murillas R, Segovia JC, Samper E, Surrallés J, Gregory PD, Holmes MC, Naldini L, Bueren JA (2014) Targeted gene therapy and cell reprogramming in Fanconi anemia. EMBO Mol Med 6:835–848PubMedCentralPubMedGoogle Scholar
  101. Rouet P, Smih F, Jasin M (1994a) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91:6064–6068PubMedCentralPubMedGoogle Scholar
  102. Rouet P, Smih F, Jasin M (1994b) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106PubMedCentralPubMedGoogle Scholar
  103. Rousseau J, Chapdelaine P, Boisvert S, Almeida LP, Corbeil J, Montpetit A, Tremblay JP (2011) Endonucleases: tools to correct the dystrophin gene. J Gene Med 13:522–537PubMedGoogle Scholar
  104. Ruby KM, Zheng B (2009) Gene targeting in a HUES line of human embryonic stem cells via electroporation. Stem Cells 27:1496–1506PubMedGoogle Scholar
  105. Rusk N (2014) CRISPRs and epigenome editing. Nat Methods 11:28PubMedGoogle Scholar
  106. Sadowski I, Ma J, Triezenberg S, Ptashne M (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335:563–564PubMedGoogle Scholar
  107. Sakuma T, Hosoi S, Woltjen K, Suzuki K-I, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Y, Matsuura S, Okada Y, Kawahara A, Hayashi S, Yamamoto T (2013) Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells 18:315–326PubMedGoogle Scholar
  108. Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T (2014) Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 4:5400PubMedCentralPubMedGoogle Scholar
  109. Scherer WF, Syverton JT, Gey GO (1953) Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 97:695–710PubMedCentralPubMedGoogle Scholar
  110. Schwank G, Koo B-K, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, Nieuwenhuis EES, Beekman JM, Clevers H (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658PubMedGoogle Scholar
  111. Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, Goodwin MJ, Hawkins JS, Ramirez CL, Batista LFZ, Artandi SE, Wernig M, Joung JK (2011) In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29:1717–1726PubMedCentralPubMedGoogle Scholar
  112. Segal DJ, Dreier B, Beerli RR, Barbas CF 3rd (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci U S A 96:2758–2763PubMedCentralPubMedGoogle Scholar
  113. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87PubMedCentralPubMedGoogle Scholar
  114. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11:399–402PubMedGoogle Scholar
  115. Silva GH, Dalgaard JZ, Belfort M, Van Roey P (1999) Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI. J Mol Biol 286:1123–1136PubMedGoogle Scholar
  116. Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28:3361–3369PubMedCentralPubMedGoogle Scholar
  117. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317:230–234PubMedGoogle Scholar
  118. Soldner F, Laganière J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146:318–331PubMedCentralPubMedGoogle Scholar
  119. Song H, Chung S-K, Xu Y (2010) Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6:80–89PubMedGoogle Scholar
  120. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedGoogle Scholar
  121. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedGoogle Scholar
  122. Tay FC, Tan W-K, Goh S-L, Ramachandra CJA, Lau C-H, Zhu H, Chen C, Du S, Phang R-Z, Shahbazi M, Fan W, Wang S (2013) Targeted transgene insertion into the AAVS1 locus driven by baculoviral vector-mediated zinc finger nuclease expression in human-induced pluripotent stem cells. J Gene Med 15:384–395PubMedGoogle Scholar
  123. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910PubMedCentralPubMedGoogle Scholar
  124. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512PubMedGoogle Scholar
  125. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedGoogle Scholar
  126. Torikai H, Reik A, Liu P, Zhou Y, Zhang L, Maiti S, Huls H, Miller J, Kebriaei P, Rabinovitch B, Lee D, Champlin R, Bonini C, Naldini L, Rebar E, Gregory P, Holmes M, Cooper L (2012) A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119:5697–5705PubMedCentralPubMedGoogle Scholar
  127. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576PubMedCentralPubMedGoogle Scholar
  128. Urbach A, Schuldiner M, Benvenisty N (2004) Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22:635–641PubMedGoogle Scholar
  129. Urnov FD, Miller JC, Lee Y-L, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651PubMedGoogle Scholar
  130. Voigt P, Reinberg D (2013) Epigenome editing. Nat Biotechnol 31:1097–1099PubMedGoogle Scholar
  131. Wang Y, Zhang WY, Hu S, Lan F, Lee AS, Huber B, Lisowski L, Liang P, Huang M, de Almeida PE, Won JH, Sun N, Robbins RC, Kay MA, Urnov FD, Wu JC (2012) Genome editing of human embryonic stem cells and induced pluripotent stem cells with zinc finger nucleases for cellular imaging. Circ Res 111:1494–1503PubMedCentralPubMedGoogle Scholar
  132. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84PubMedCentralPubMedGoogle Scholar
  133. Yao Y, Nashun B, Zhou T, Qin L, Qin L, Zhao S, Xu J, Esteban M, Chen X (2011) Generation of CD34+ cells from CCR5-disrupted human embryonic and induced pluripotent stem cells. Hum Gene Ther 23:238–242PubMedGoogle Scholar
  134. Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z, Chang JC, Bao G, Muench MO, Yu J, Levy JA, Kan YW (2014) Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A 111:9591–9596PubMedGoogle Scholar
  135. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu P-Q, Paschon DE, Miranda E, Ordóñez A, Hannan NRF, Rouhani FJ, Darche S, Alexander G, Marciniak SJ, Fusaki N, Hasegawa M, Holmes MC, Di Santo JP, Lomas DA, Bradley A, Vallier L (2011) Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–394PubMedCentralPubMedGoogle Scholar
  136. Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, Wei W (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487–491PubMedGoogle Scholar
  137. Zhu H, Lau C-H, Goh S-L, Liang Q, Chen C, Du S, Phang R-Z, Tay FC, Tan W-K, Li Z, Tay JC-K, Fan W, Wang S (2013) Baculoviral transduction facilitates TALEN-mediated targeted transgene integration and Cre/LoxP cassette exchange in human-induced pluripotent stem cells. Nucleic Acids Res 41:e180PubMedCentralPubMedGoogle Scholar
  138. Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou B-K, Chen G, Ye Z, Park I-H, Daley GQ, Porteus MH, Joung JK, Cheng L (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5:97–110PubMedCentralPubMedGoogle Scholar
  139. Zou J, Mali P, Huang X, Dowey SN, Cheng L (2011a) Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 118:4599–4608PubMedCentralPubMedGoogle Scholar
  140. Zou J, Sweeney CL, Chou BK, Choi U, Pan J, Wang H, Dowey SN, Cheng L, Malech HL (2011b) Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 117:5561–5572PubMedCentralPubMedGoogle Scholar
  141. Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319–321PubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Reprogramming Science, Centre for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan

Personalised recommendations