Advertisement

Benefits of Generalised Microsimulation

  • Daniel Keep
  • Ian Piper
  • Anthony Green
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 564)

Abstract

This paper states our position regarding the desirable properties of a discrete simulation environment and details our response to this. Following a brief introductory examination of the pre-existing art in microsimulation modelling, we describe our approach and detail its structure and use.

Keywords

Microsimulation Microsimulation modelling Simulation 

References

  1. 1.
    Balci, O., Arthur, J.D., Ormsby, W.F.: Achieving reusability and composability with a simulation conceptual model. J. Simul. 5(3), 157–165 (2011). http://www.palgrave-journals.com/doifinder/10.1057/jos.2011.7
  2. 2.
    Birkin, M., Wu, B.: A Review of microsimulation and hybrid agent-based approaches. In: Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M. (eds.) Agent-Based Models of Geographical Systems, pp. 51–68. Springer, Netherlands (2012). http://dx.doi.org/10.1007/978-90-481-8927-4_3
  3. 3.
    Brouwers, L., Boman, M., Camitz, M., Mäkilä, K., Tegnell, A.: Micro-simulation of a smallpox outbreak using official register data. Euro Surveill. 15(35), 1–8 (2010). http://www.ncbi.nlm.nih.gov/pubmed/20822732
  4. 4.
    Chen, X.: Microsimulation of hurricane evacuation strategies of galveston island. Prof. Geogr. 60(2), 160–173 (2008). doi: 10.1080/00330120701873645. http://www.tandfonline.com/doi/abs/10.1080/00330120701873645
  5. 5.
    Crooks, A.T., Heppenstall, A.J.: Introduction to agent-based modelling. In: Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M. (eds.) Agent-Based Models of Geographical Systems, pp. 85–105. Springer, Netherlands (2012). doi: 10.1007/978-90-481-8927-4_5. http://dx.doi.org/10.1007/978-90-481-8927-4_5
  6. 6.
    Dudley, S.F.: The Spread of “Droplet infection” in Semi-Isolated Communities. H. M. Stationery Office (1926)Google Scholar
  7. 7.
    Green, A.R., Zhang, Y., Piper, I.C., Keep, D.R.: Application of microsimulation to disease transmission and control. In: Proceedings of the 2011 MODSIM International Congress on Modelling and Simulation, pp. 919–925 (2011). http://www.mssanz.org.au/modsim2011/B2/green.pdf
  8. 8.
    Keep, D., Piper, I.C., Green, A.R., Bunder, R.: Modelling of behaviours in response to terrorist activity. In: Chan, F., Marinova, D., Anderssen, R.S. (eds.) 19th International Congress on Modelling and Simulation, pp. 475–481. Modelling and Simulation Society, Perth (2011). http://www.mssanz.org.au/modsim2011/A6/keep.pdf
  9. 9.
    Keep, D.R.: Generalised Microsimulation. Ph.D. thesis, University of Wollongong (2012)Google Scholar
  10. 10.
    Orcutt, G.H.: A New Type of Socio-Economic System. Rev. Econ. Stat. 39(2), 116 (1957). doi: 10.2307/1928528. http://www.jstor.org/stable/1928528?origin=crossref
  11. 11.
    Outbreak of Severe Acute Respiratory Syndrome (SARS) at Amoy Gardens, Kowloon Bay, Hong Kong; Main Findings of the Investigation. Tech. rep., Health Department of the Hong Kong Special Administrative Region of the People’s Republic of China Government Information Centre (2003)Google Scholar
  12. 12.
    Piper, I., Keep, D., Green, T., Zhang, I.: Application of microsimulation to the modelling of epidemics and terrorist attacks. Informatica 34, 141–150 (2010). http://www.freepatentsonline.com/article/Informatica/232715912.html
  13. 13.
    Sauerbier, T.: UMDBS - A new tool for dynamic microsimulation. J. Artif. Soc. Soc. Simul. 5(2) (2002). http://jasss.soc.surrey.ac.uk/5/2/5.html
  14. 14.
    Smith, L., Beckman, R., Baggerly, K., Anson, D., Williams, M.: TRANSIMS: Transportation analysis and simulation system. Tech. Rep. 26295, Los Alamos National Lab., NM (United States) (1995). http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=88648
  15. 15.
    Spielauer, M.: What is social science microsimulation? Soc. Sci. Comput. Rev. 29(1), 9–20 (2010). doi: 10.1177/0894439310370085. http://ssc.sagepub.com/cgi/doi/10.1177/0894439310370085
  16. 16.
  17. 17.
    Stroud, P., Del Valle, S., Sydoriak, S., Riese, J., Mniszewski, S.: Spatial dynamics of pandemic influenza in a massive artificial society. J. Artif. Soc. Soc. Simul. 10(4), 9 (2007). http://jasss.soc.surrey.ac.uk/10/4/9.html
  18. 18.
    Tsai, J., Fridman, N., Bowring, E., Brown, M.: ESCAPES-Evacuation Simulation with Children, Authorities, Parents, Emotions, and Social comparison. In: Tumer, Y., Sonenberg, S. (eds.) Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems. Innovative Applications Track (AAMAS 2011), pp. 457–464 (2011). http://www.aamas-conference.org/Proceedings/aamas2011/papers/D3_G57.pdf
  19. 19.
    Wolshon, B., Resiliency, T., Lefate, J., Naghawi, H., Montz, T., Dixit, V.: Application of TRANSIMS for the multimodal microscale simulation of the new orleans emergency evacuation plan. Tech. rep., Louisiana State University (2009). http://www.ntis.gov/search/product.aspx?ABBR=PB2011107618
  20. 20.
    Wu, B.M., Birkin, M.H., Rees, P.H.: A dynamic msm with agent elements for spatial demographic forecasting. Soc. Sci. Comput. Rev. 29(1), 145–160 (2010). doi: 10.1177/0894439310370113. http://ssc.sagepub.com/cgi/doi/10.1177/0894439310370113

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Daniel Keep
    • 1
  • Ian Piper
    • 1
  • Anthony Green
    • 1
  1. 1.University of WollongongWollongongAustralia

Personalised recommendations