Amebiasis pp 351-372

Glucose Metabolism and Its Controlling Mechanisms in Entamoeba histolytica

  • Erika Pineda
  • Rusely Encalada
  • Citlali Vázquez
  • Zabdi González
  • Rafael Moreno-Sánchez
  • Emma Saavedra
Chapter

Abstract

Entamoeba histolytica lacks the genes encoding the enzymes of the Krebs cycle and oxidative phosphorylation; therefore, glycolysis is the main pathway for ATP supply and for providing carbon skeleton precursors for the synthesis of macromolecules. External glucose is metabolized through a fermentative glycolysis producing mainly ethanol and, to a lower extent, acetate as end products. The pathway in the parasite deviates in several aspects from the typical glycolysis present in mammals and yeasts, for instance, (1) the use of pyrophosphate as high-energy phosphate donor in several reactions; (2) the feasibility of thermodynamic reversibility of all pathway reactions under physiological conditions; and (3) the presence of fermentative enzymes similar to those of anaerobic bacteria. These and other enzyme peculiarities impose different mechanisms of control of the glycolytic fermentative flux in the parasite compared to the highly allosterically regulated glycolysis in other eukaryotic cells. In this chapter, we summarize the previous and current knowledge of the carbohydrate metabolism in E. histolytica and analyze its underlying controlling mechanisms by applying the fundamentals of metabolic control analysis (MCA).

Keywords

Chitin synthesis Controlling step Drug target Flux control coefficient Glycogen metabolism Glycolysis Metabolic control analysis Pentose phosphate pathway 

References

  1. 1.
    Band RN, Cirrito H (1979) Growth response of axenic Entamoeba histolytica to hydrogen, carbon dioxide, and oxygen. J Protozool 26:282–286PubMedCrossRefGoogle Scholar
  2. 2.
    Gillin FD, Diamond LS (1981) Entamoeba histolytica and Giardia lamblia: effects of cysteine and oxygen tension on trophozoite attachment to glass and survival in culture media. Exp Parasitol 52(1):9–17PubMedCrossRefGoogle Scholar
  3. 3.
    Taylor EW, Bentley S, Youngs D, Keighley MR (1981) Bowel preparation and the safety of colonoscopic polypectomy. Gastroenterology 81(1):1–4PubMedGoogle Scholar
  4. 4.
    Ladas SD, Karamanolis G, Ben-Soussan E (2007) Colonic gas explosion during therapeutic colonoscopy with electrocautery. World J Gastroenterol 13:5295–5298PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Reeves RE (1984) Metabolism of Entamoeba histolytica Schaudinn, 1903. Adv Parasitol 23:105–142PubMedCrossRefGoogle Scholar
  6. 6.
    Clark CG, Alsmark UC, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N (2007) Structure and content of the Entamoeba histolytica genome. Adv Parasitol 65:51–190PubMedCrossRefGoogle Scholar
  7. 7.
    Saavedra E, Encalada R, Pineda E, Jasso-Chávez R, Moreno-Sánchez R (2005) Glycolysis in Entamoeba histolytica. Biochemical characterization of recombinant glycolytic enzymes and flux control analysis. FEBS J 272:1767–1783PubMedCrossRefGoogle Scholar
  8. 8.
    Serrano R, Reeves RE (1974) Glucose transport in Entamoeba histolytica. Biochem J 144:43–48PubMedCentralPubMedGoogle Scholar
  9. 9.
    Serrano R, Reeves RE (1975) Physiological significance of glucose transport in Entamoeba histolytica. Exp Parasitol 37:411–416PubMedCrossRefGoogle Scholar
  10. 10.
    Saavedra E, Marin-Hernandez A, Encalada R, Olivos A, Mendoza-Hernandez G, Moreno-Sánchez R (2007) Kinetic modeling can describe in vivo glycolysis in Entamoeba histolytica. FEBS J 274:4922–4940PubMedCrossRefGoogle Scholar
  11. 11.
    Reeves RE, Montalvo F, Sillero A (1967) Glucokinase from Entamoeba histolytica and related organism. Biochemistry 6:1752–1760PubMedCrossRefGoogle Scholar
  12. 12.
    Kroschewski H, Ortner S, Steipe B, Scheiner O, Wiedermann G, Duchêne M (2000) Differences in substrate specificity and kinetic properties of the recombinant hexokinases HXK 1 and HXK 2 from Entamoeba histolytica. Mol Biochem Parasitol 105:71–80PubMedCrossRefGoogle Scholar
  13. 13.
    Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S, Encalada R, Moreno-Sánchez R, Saavedra E (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767PubMedCrossRefGoogle Scholar
  14. 14.
    Reeves RE, South DJ, Blytt HJ, Warren LG (1974) Pyrophosphate: d-fructose 6-phosphate 1-phosphotransferase. A new enzyme with the glycolytic function of 6-phosphofructokinase. J Biol Chem 249:7737–7741PubMedGoogle Scholar
  15. 15.
    Reeves RE, Serrano R, South DJ (1976) 6-Phosphofructokinase (pyrophosphate). Properties of the enzyme from Entamoeba histolytica and its reaction mechanism. J Biol Chem 251:2958–2962PubMedGoogle Scholar
  16. 16.
    Deng Z, Huang M, Singh K, Albach RA, Latshaw SP, Chang KP, Kemp RG (1998) Cloning and expression of the gene for the active PPi-dependent phosphofructokinase of Entamoeba histolytica. Biochem J 329:659–664PubMedCentralPubMedGoogle Scholar
  17. 17.
    Chi AS, Deng Z, Albach RA, Kemp RG (2001) The two phosphofructokinase gene products of Entamoeba histolytica. J Biol Chem 276:19974–19981PubMedCrossRefGoogle Scholar
  18. 18.
    Kalra IS, Dutta G, Mohan-Rao VK (1969) Entamoeba histolytica: effect of metal ions, metal binders, therapeutics, antibiotics, and inhibitors on aldolase activity. Exp Parasitol 24:26–31PubMedCrossRefGoogle Scholar
  19. 19.
    Landa A, Rojo-Domínguez A, Jiménez L, Fernández-Velasco DA (1997) Sequencing, expression and properties of triosephosphate isomerase from Entamoeba histolytica. Eur J Biochem 247:348–355PubMedCrossRefGoogle Scholar
  20. 20.
    Reeves RE, South D (1974) Phosphoglycerate kinase (GTP). An enzyme from Entamoeba histolytica selective for guanine nucleotides. Biochem Biophys Res Commun 58:1053–1057PubMedCrossRefGoogle Scholar
  21. 21.
    Encalada R, Rojo-Dominguez A, Rodriguez-Zavala JS, Pardo JP, Quezada H, Moreno-Sánchez R, Saavedra E (2009) Molecular basis of the unusual catalytic preference for GDP/GTP in Entamoeba histolytica 3-phosphoglycerate kinase. FEBS J 276:2037–2047PubMedCrossRefGoogle Scholar
  22. 22.
    Reeves RE (1968) A new enzyme with the glycolytic function of pyruvate kinase. J Biol Chem 263:3202–3204Google Scholar
  23. 23.
    Saavedra-Lira E, Ramirez-Silva L, Pérez-Montford R (1998) Expression and characterization of recombinant pyruvate phosphate dikinase from Entamoeba histolytica. Biochim Biophys Acta 1382:47–54PubMedCrossRefGoogle Scholar
  24. 24.
    Saavedra E, Olivos A, Encalada R, Moreno-Sánchez R (2004) Entamoeba histolytica: kinetic and molecular evidence of a previously unidentified pyruvate kinase. Exp Parasitol 106:11–21PubMedCrossRefGoogle Scholar
  25. 25.
    Pineda E, Encalada R, Rodriguez-Zavala JS, Olivos-Garcia A, Moreno-Sánchez R, Saavedra E (2010) Pyruvate:ferredoxin oxidoreductase and bifunctional aldehyde-alcohol dehydrogenase are essential for energy metabolism under oxidative stress in Entamoeba histolytica. FEBS J 277:3382–3395PubMedCrossRefGoogle Scholar
  26. 26.
    Pineda E, Encalada R, Olivos-García A, Néquiz M, Moreno-Sánchez R, Saavedra E (2013) The bifunctional aldehyde-alcohol dehydrogenase controls ethanol and acetate production in Entamoeba histolytica under aerobic conditions. FEBS Lett 587:178–184PubMedCrossRefGoogle Scholar
  27. 27.
    Espinosa A, Yan L, Zhang Z, Foster L, Clark D, Li E, Stanley SL Jr (2001) The bifunctional Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2) protein is necessary for amebic growth and survival and requires an intact C-terminal domain for both alcohol dehydrogenase and acetaldehyde dehydrogenase activity. J Biol Chem 276:20136–20143PubMedCrossRefGoogle Scholar
  28. 28.
    Bruchhaus I, Tannich E (1994) Purification and molecular characterization of the NAD+-dependent acetaldehyde/alcohol dehydrogenase from Entamoeba histolytica. Biochem J 303:743–748PubMedCentralPubMedGoogle Scholar
  29. 29.
    Yong TS, Li E, Clark D, Stanley SL Jr (1996) Complementation of an Escherichia coli adhE mutant by the Entamoeba histolytica EhADH2 gene provides a method for the identification of new antiamebic drugs. Proc Natl Acad Sci USA 93:6464–6469PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Reeves RE, Guthrie JD (1975) Acetate kinase (pyrophosphate). A fourth pyrophosphate-dependent kinase from Entamoeba histolytica. Biochem Biophys Res Commun 66:1389–1395PubMedCrossRefGoogle Scholar
  31. 31.
    Moreno-Sánchez R, Encalada R, Marin-Hernandez A, Saavedra E (2008) Experimental validation of metabolic pathway modeling. FEBS J 275:3454–3469PubMedCrossRefGoogle Scholar
  32. 32.
    Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S, Olín-Sandoval V (2008) Metabolic control analysis: a tool for designing strategies to manipulate metabolic pathways. J Biomed Biotechnol 2008:597913PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Ortner S, Plaimauer B, Binder M, Scheiner O, Wiedermann G, Duchêne M (1995) Molecular analysis of two hexokinase isoenzymes from Entamoeba histolytica. Mol Biochem Parasitol 73(1-2):189–198PubMedCrossRefGoogle Scholar
  34. 34.
    Sargeaunt PG (1987) Zymodemes of Entamoeba histolytica. Parasitol Today 3(5):158PubMedCrossRefGoogle Scholar
  35. 35.
    Ortner S, Clark CG, Binder M, Scheiner O, Wiedermann G, Duchêne M (1997) Molecular biology of hexokinases isoenzyme pattern that distinguishes pathogenic Entamoeba histolytica from nonpathogenic Entamoeba dispar. Mol Biochem Parasitol 86:85–94PubMedGoogle Scholar
  36. 36.
    Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206:2049–2057PubMedCrossRefGoogle Scholar
  37. 37.
    Razmjou E, Haghighi A, Rezaian M, Kobayashi S, Nozaki T (2006) Genetic diversity of glucose phosphate isomerase from Entamoeba histolytica. Parasitol Int 55:307–311PubMedCrossRefGoogle Scholar
  38. 38.
    Moreno-Sánchez R, Marín-Hernández A, Gallardo-Pérez JC, Quezada H, Encalada R, Rodríguez-Enríquez S, Saavedra E (2012) Phosphofructokinase type 1 kinetics, isoform expression, and gene polymorphisms in cancer cells. J Cell Biochem 113(5):1692–1703PubMedGoogle Scholar
  39. 39.
    Bruchhaus I, Jacobs T, Denart M, Tannich E (1996) Pyrophosphate-dependent phosphofructokinase of Entamoeba histolytica: molecular cloning, recombinant expression and inhibition by pyrophosphate analogues. Biochem J 316:57–63PubMedCentralPubMedGoogle Scholar
  40. 40.
    Teusink B, Walsh MC, van Dam K, Westerhoff HV (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23:162–169PubMedCrossRefGoogle Scholar
  41. 41.
    Chi A, Kemp RG (2000) The primordial high energy compound: ATP or inorganic pyrophosphate? J Biol Chem 275:35677–35679PubMedCrossRefGoogle Scholar
  42. 42.
    Susskind BM, Warren LG, Reeves RE (1982) A pathway for the interconversion of hexose and pentose in the parasitic amoeba Entamoeba histolytica. Biochem J 204:191–196PubMedCentralPubMedGoogle Scholar
  43. 43.
    Sánchez L, Horner D, Moore D, Henze K, Embley T, Müller M (2002) Fructose-1,6-biphosphate aldolases in amitochondriate protists constitute a single protein subfamily with eubacterial relationships. Gene (Amst) 295:51–59CrossRefGoogle Scholar
  44. 44.
    Rodríguez-Romero A, Hernández-Santoyo A, del Pozo YL, Kornhauser A, Fernández-Velasco DA (2002) Structure and inactivation of triosephosphate isomerase from Entamoeba histolytica. J Mol Biol 322:669–675PubMedCrossRefGoogle Scholar
  45. 45.
    Alvarez AH, Martinez-Cadena G, Silva ME, Saavedra E, Avila EE (2007) Entamoeba histolytica: ADP-ribosylation of secreted glyceraldehyde-3-phosphate dehydrogenase. Exp Parasitol 117:349–356PubMedCrossRefGoogle Scholar
  46. 46.
    Collingridge PW, Brown RW, Ginger ML (2010) Moonlighting enzymes in parasitic protozoa. Parasitology 137:1467–1475PubMedCrossRefGoogle Scholar
  47. 47.
    Sirover MA (2011) On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta 1810:741–751PubMedCrossRefGoogle Scholar
  48. 48.
    Husain A, Sato D, Jeelani G, Soga T, Nozaki T (2012) Dramatic increase in glycerol biosynthesis upon oxidative stress in the anaerobic protozoan parasite Entamoeba histolytica. PLoS Negl Trop Dis 6:e1831PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Tovy A, Siman-Tov R, Gaentzsch R, Helm M, Ankri S (2010) A new nuclear function of the Entamoeba histolytica glycolytic enzyme enolase: the metabolic regulation of cytosine-5 methyltransferase 2 (Dnmt2) activity. PLoS Pathog 6:e1000775PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Segovia-Gamboa NC, Talamás-Rohana P, Ángel-Martínez A, Cázares-Raga FE, González-Robles A, Hernández-Ramírez VI, Martínez-Palomo A, Chávez-Munguía B (2011) Differentiation of Entamoeba histolytica: a possible role for enolase. Exp Parasitol 129:65–71PubMedCrossRefGoogle Scholar
  51. 51.
    Reeves RE (1970) Phosphopyruvate carboxylase from Entamoeba histolytica. Biochim Biophys Acta 220:346–349PubMedCrossRefGoogle Scholar
  52. 52.
    Reeves RE, Warren LG, Susskind B, Lo HS (1977) An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J Biol Chem 252:726–731PubMedGoogle Scholar
  53. 53.
    Lo HS, Reeves RE (1978) Pyruvate-to-ethanol pathway in Entamoeba histolytica. Biochem J 171:225–230PubMedCentralPubMedGoogle Scholar
  54. 54.
    Wassmann C, Hellberg A, Tannich E, Bruchhaus I (1999) Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J Biol Chem 274:26051–26056PubMedCrossRefGoogle Scholar
  55. 55.
    Imlay JA (2006) Iron-sulphur clusters and the problem with oxygen. Mol Microbiol 59:1073–1082PubMedCrossRefGoogle Scholar
  56. 56.
    Ramos-Martínez E, Olivos-Garcia A, Saavedra E, Nequiz M, Sanchez EC, Tello E, El-Hafidi M, Saralegui A, Pineda E, Delgado J et al (2009) Entamoeba histolytica: oxygen resistance and virulence. Int J Parasitol 39:693–702PubMedCrossRefGoogle Scholar
  57. 57.
    Bringaud F, Ebikeme C, Boshart M (2010) Acetate and succinate production in amoebae, helminths, diplomonads, trichomonads and trypanosomatids: common and diverse metabolic strategies used by parasitic lower eukaryotes. Parasitology 137:1315–1331PubMedCrossRefGoogle Scholar
  58. 58.
    Avila EE, Martínez-Alcaraz ER, Barbosa-Sabanero G, Rivera-Baron EI, Arias-Negrete S, Zazueta-Sandoval R (2002) Subcellular localization of the NAD+-dependent alcohol dehydrogenase in Entamoeba histolytica trophozoites. J Parasitol 88(2):217–222PubMedGoogle Scholar
  59. 59.
    Reyes-López M, Bermudez-Cruz RM, Avila EE, de la Garza M (2011) Acetaldehyde/alcohol dehydrogenase-2 (EhADH2) and clathrin are involved in internalization of human transferrin by Entamoeba histolytica. Microbiology 157:209–219PubMedCrossRefGoogle Scholar
  60. 60.
    Leitsch D, Williams CF, Lloyd D, Duchêne M (2013) Unexpected properties of NADP-dependent secondary alcohol dehydrogenase (ADH-1) in Trichomonas vaginalis and other microaerophilic parasites. Exp Parasitol 134(3):374–380PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Field J, Rosenthal B, Samuelson J (2000) Early lateral transfer of genes encoding malic enzyme, acetyl-CoA synthetase and alcohol dehydrogenases from anaerobic prokaryotes to Entamoeba histolytica. Mol Microbiol 38:446–455PubMedCrossRefGoogle Scholar
  62. 62.
    Fowler ML, Ingram-Smith C, Smith KS (2012) Novel pyrophosphate-forming acetate kinase from the protist Entamoeba histolytica. Eukaryot Cell 11:1249–1256PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Takeuchi T, Weinbach EC, Diamond LS (1977) Entamoeba histolytica: localization and characterization of phosphoglucomutase, uridine diphosphate glucose pyrophosphorylase, and glycogen synthase. Exp Parasitol 43(1):115–121PubMedCrossRefGoogle Scholar
  64. 64.
    Ortner S, Binder M, Scheiner O, Wiedermann G, Duchêne M (1997) Molecular and biochemical characterization of phosphoglucomutases from Entamoeba histolytica and Entamoeba dispar. Mol Biochem Parasitol 90(1):121–129PubMedCrossRefGoogle Scholar
  65. 65.
    Martínez LI, Piattoni CV, Garay SA, Rodrígues DE, Guerrero SA, Iglesias AA (2011) Redox regulation of UDP-glucose pyrophosphorylase from Entamoeba histolytica. Biochimie 93(2):260–268PubMedCrossRefGoogle Scholar
  66. 66.
    Takeuchi T, Weinbach EC, Diamond LS (1977) Entamoeba histolytica: localization and characterization of phosphorylase and particulate glycogen. Exp Parasitol 43(1):107–114PubMedCrossRefGoogle Scholar
  67. 67.
    Samanta SK, Ghosh SK (2012) The chitin biosynthesis pathway in Entamoeba and the role of glucosamine-6-P isomerase by RNA interference. Mol Biochem Parasitol 186:60–68PubMedCrossRefGoogle Scholar
  68. 68.
    Jeelani G, Sato D, Husain A, Escueta-de Cadiz A, Sugimoto M, Soga T, Suematsu M, Nozaki T (2012) Metabolic profiling of the protozoan parasite Entamoeba invadens revealed activation of unpredicted pathway during encystation. PLoS One 7:e37740PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Aguilar-Díaz H, Díaz-Gallardo M, Laclette JP, Carrero JC (2010) In vitro induction of Entamoeba histolytica cyst-like structures from trophozoites. PLoS Negl Trop Dis 4:e607PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Nozaki T, Ali V, Tokoro M (2005) Sulfur-containing amino acid metabolism in parasitic protozoa. Adv Parasitol 60:1–99PubMedCrossRefGoogle Scholar
  71. 71.
    Fahey RC, Newton GL, Arrick B, Overdank-Bogart T, Aley SB (1984) Entamoeba histolytica: a eukaryote without glutathione metabolism. Science 224(4644):70–72PubMedCrossRefGoogle Scholar
  72. 72.
    Zuo X, Coombs GH (1995) Amino acid consumption by the parasitic, amoeboid protists Entamoeba histolytica and E. invadens. FEMS Microbiol Lett 130:253–258PubMedCrossRefGoogle Scholar
  73. 73.
    Fell D (1997) Understanding the control of metabolism. Portland Press, LondonGoogle Scholar
  74. 74.
    Westerhoff HV (2011) Systems biology left and right. Methods Enzymol 500:3–11PubMedCrossRefGoogle Scholar
  75. 75.
    Hübner K, Sahle S, Kummer U (2011) Applications and trends in systems biology in biochemistry. FEBS J 278:2767–2857PubMedCrossRefGoogle Scholar
  76. 76.
    Bakker BM, Michels PA, Opperdoes FR, Westerhoff HV (1999) What controls glycolysis in bloodstream form Trypanosoma brucei? J Biol Chem 274:14551–14559PubMedCrossRefGoogle Scholar
  77. 77.
    Snoep JL (2005) The silicon cell initiative: working towards a detailed kinetic description at the cellular level. Curr Opin Biotechnol 16:336–343PubMedCrossRefGoogle Scholar
  78. 78.
    Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI: a COmplex PAthway SImulator. Bioinformatics 22:3067–3074PubMedCrossRefGoogle Scholar
  79. 79.
    Hornberg JJ, Bruggeman FJ, Bakker BM, Westerhoff HV (2007) Metabolic control analysis to identify optimal drug targets. Prog Drug Res 64:172–189Google Scholar
  80. 80.
    Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S, Gallardo-Pérez JC, Quezada H, Westerhoff HV (2010) Metabolic control analysis indicates a change of strategy in the treatment of cancer. Mitochondrion 10:626–639PubMedCrossRefGoogle Scholar
  81. 81.
    Olin-Sandoval V, González-Chávez Z, Berzunza-Cruz M, Martínez I, Jasso-Chávez R, Becker I, Espinoza B, Moreno-Sánchez R, Saavedra E (2012) Drug target validation of the trypanothione pathway enzymes through metabolic modelling. FEBS J 279:1811–1833PubMedCrossRefGoogle Scholar
  82. 82.
    Saucedo-Mendiola ML, Salas-Pacheco JM, Nájera H, Rojo-Domínguez A, Yépez-Mulia L, Avitia-Domínguez C, Téllez-Valencia A (2013) Discovery of Entamoeba histolytica hexokinase 1 inhibitors through homology modeling and virtual screening. J Enzyme Inhib Med Chem. doi:10.3109/14756366.2013.779265 PubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Erika Pineda
    • 1
  • Rusely Encalada
    • 1
  • Citlali Vázquez
    • 1
  • Zabdi González
    • 1
  • Rafael Moreno-Sánchez
    • 1
  • Emma Saavedra
    • 1
  1. 1.Departamento de BioquímicaInstituto Nacional de Cardiología Ignacio ChávezMéxico D.F.Mexico

Personalised recommendations