Recent Advances in 3D Tissue Models

  • A. Kivelio
  • M. Ehrbar
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


Physiologically relevant tissue models that bridge the gap between 2D tissue culture and animal trials would be highly desirable to study the function of tissues in health and disease as well as for the validation of lead compounds during drug development. The field has made impressive advances in 3D culturing cells and organoids in naturally derived materials. Novel, rationally designed, biomimetic materials have been established, which allow the almost individual variation of matrix parameters, such as stiffness, cell adhesion, degradability, or growth factor binding and controlled release. The combination of innovative materials with novel technological platforms such as printing, microfluidics, and additive or preventive manufacturing provides a great potential to build unprecedented, complex tissue models. Here we review recent advances in the design of materials building blocks which allow the formation of 3D structured microenvironments. We will mainly focus on strategies to locally position cell-instructive molecular cues and discuss needs to generate models which would allow the investigator to controllably manipulate cells in their 3D context with the aim to generate complex but yet scalable tissue models.


3D tissue models Cell-instructive hydrogels Growth factors Patterning Spatiotemporal control 



We would like to express our gratitude to Dr. Philipp Lienemann for producing the illustrations and for helpful discussions.


  1. 1.
    Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610PubMedCrossRefGoogle Scholar
  2. 2.
    Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7(3):211–224PubMedCrossRefGoogle Scholar
  3. 3.
    Friedl P, Brocker EB (2000) The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci 57(1):41–64PubMedCrossRefGoogle Scholar
  4. 4.
    Eke I, Cordes N (2011) Radiobiology goes 3D: how ECM and cell morphology impact on cell survival after irradiation. Radiother Oncol 99(3):271–278PubMedCrossRefGoogle Scholar
  5. 5.
    Sethi T, Rintoul RC, Moore SM, MacKinnon AC, Salter D, Choo C et al (1999) Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5(6):662–668PubMedCrossRefGoogle Scholar
  6. 6.
    Lee YJ, Sheu TJ, Keng PC (2005) Enhancement of radiosensitivity in H1299 cancer cells by actin-associated protein cofilin. Biochem Biophys Res Commun 335(2):286–291PubMedCrossRefGoogle Scholar
  7. 7.
    Liu JS, Gartner ZJ (2012) Directing the assembly of spatially organized multicomponent tissues from the bottom up. Trends Cell Biol 22(12):683–691PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hynds RE, Giangreco A (2013) Concise review: the relevance of human stem cell‐derived organoid models for epithelial translational medicine. Stem Cells 31(3):417–422PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(Pt 24):4195–4200PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712PubMedCrossRefGoogle Scholar
  11. 11.
    Kelm JM, Fussenegger M (2010) Scaffold-free cell delivery for use in regenerative medicine. Adv Drug Deliv Rev 62(7–8):753–764PubMedCrossRefGoogle Scholar
  12. 12.
    Drewitz M, Helbling M, Fried N, Bieri M, Moritz W, Lichtenberg J et al (2011) Towards automated production and drug sensitivity testing using scaffold‐free spherical tumor microtissues. Biotechnol J 6(12):1488–1496PubMedCrossRefGoogle Scholar
  13. 13.
    Rimann M, Graf-Hausner U (2012) Synthetic 3D multicellular systems for drug development. Curr Opin Biotechnol 23(5):803–809PubMedCrossRefGoogle Scholar
  14. 14.
    Kelm JM, Djonov V, Hoerstrup SP, Guenter CI, Ittner LM, Greve F et al (2006) Tissue-transplant fusion and vascularization of myocardial microtissues and macrotissues implanted into chicken embryos and rats. Tissue Eng 12(9):2541–2553PubMedCrossRefGoogle Scholar
  15. 15.
    Stevens KR, Ungrin MD, Schwartz RE, Ng S, Carvalho B, Christine KS et al (2013) InVERT molding for scalable control of tissue microarchitecture. Nat Commun 4:1847PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12(1):47–56PubMedGoogle Scholar
  17. 17.
    McAllister TN, Maruszewski M, Garrido SA, Wystrychowski W, Dusserre N, Marini A et al (2009) Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373(9673):1440–1446PubMedCrossRefGoogle Scholar
  18. 18.
    Gauvin R, Ahsan T, Larouche D, Levesque P, Dube J, Auger FA et al (2010) A novel single-step self-assembly approach for the fabrication of tissue-engineered vascular constructs. Tissue Eng Part A 16(5):1737–1747PubMedCrossRefGoogle Scholar
  19. 19.
    Bourget JM, Gauvin R, Larouche D, Lavoie A, Labbe R, Auger FA et al (2012) Human fibroblast-derived ECM as a scaffold for vascular tissue engineering. Biomaterials 33(36):9205–9213PubMedCrossRefGoogle Scholar
  20. 20.
    Guillemette MD, Gauvin R, Perron C, Labbe R, Germain L, Auger FA (2010) Tissue-engineered vascular adventitia with vasa vasorum improves graft integration and vascularization through inosculation. Tissue Eng Part A 16(8):2617–2626PubMedCrossRefGoogle Scholar
  21. 21.
    Elloumi-Hannachi I, Yamato M, Okano T (2010) Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J Intern Med 267(1):54–70PubMedCrossRefGoogle Scholar
  22. 22.
    Guillaume-Gentil O, Semenov OV, Zisch AH, Zimmermann R, Voros J, Ehrbar M (2011) pH-controlled recovery of placenta-derived mesenchymal stem cell sheets. Biomaterials 32(19):4376–4384PubMedCrossRefGoogle Scholar
  23. 23.
    Ide T, Nishida K, Yamato M, Sumide T, Utsumi M, Nozaki T et al (2006) Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes. Biomaterials 27(4):607–614PubMedCrossRefGoogle Scholar
  24. 24.
    Murakami D, Yamato M, Nishida K, Ohki T, Takagi R, Yang J et al (2006) The effect of micropores in the surface of temperature-responsive culture inserts on the fabrication of transplantable canine oral mucosal epithelial cell sheets. Biomaterials 27(32):5518–5523PubMedCrossRefGoogle Scholar
  25. 25.
    Elloumi Hannachi I, Itoga K, Kumashiro Y, Kobayashi J, Yamato M, Okano T (2009) Fabrication of transferable micropatterned-co-cultured cell sheets with microcontact printing. Biomaterials 30(29):5427–5432PubMedCrossRefGoogle Scholar
  26. 26.
    Sekine H, Shimizu T, Sakaguchi K, Dobashi I, Wada M, Yamato M et al (2013) In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun 4:1399PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926PubMedCrossRefGoogle Scholar
  28. 28.
    Couto DS, Hong Z, Mano JF (2009) Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomater 5(1):115–123PubMedCrossRefGoogle Scholar
  29. 29.
    Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29PubMedCrossRefGoogle Scholar
  30. 30.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880PubMedCrossRefGoogle Scholar
  31. 31.
    Clevers H, Batlle E (2013) SnapShot: the intestinal crypt. Cell 152(5):1198.e2CrossRefGoogle Scholar
  32. 32.
    Vidi P-A, Bissell MJ, Lelièvre SA (2013) Three-dimensional culture of human breast epithelial cells: the how and the why. In: Epithelial cell culture protocols. Springer, New York, pp 193–219Google Scholar
  33. 33.
    Kleinman HK, Martin GR (eds) (2005) Matrigel: basement membrane matrix with biological activity, Seminars in cancer biology. Elsevier, AmsterdamGoogle Scholar
  34. 34.
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE et al (2009) Single Lgr5 stem cells build crypt villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265PubMedCrossRefGoogle Scholar
  35. 35.
    Lanza R, Langer R, Vacanti JP (2011) Principles of tissue engineering. Academic, New YorkGoogle Scholar
  36. 36.
    Braziulis E, Diezi M, Biedermann T, Pontiggia L, Schmucki M, Hartmann-Fritsch F et al (2012) Modified plastic compression of collagen hydrogels provides an ideal matrix for clinically applicable skin substitutes. Tissue Eng Part C Methods 18(6):464–474PubMedCrossRefGoogle Scholar
  37. 37.
    Sabeh F, Shimizu-Hirota R, Weiss SJ (2009) Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185(1):11–19PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Boublik J, Park H, Radisic M, Tognana E, Chen F, Pei M et al (2005) Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng 11(7–8):1122–1132PubMedCrossRefGoogle Scholar
  39. 39.
    Smidsrød O (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78PubMedCrossRefGoogle Scholar
  40. 40.
    Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1):45–53PubMedCrossRefGoogle Scholar
  41. 41.
    Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6(4):1285–1309CrossRefGoogle Scholar
  42. 42.
    Laurent TC, Fraser J (1992) Hyaluronan. FASEB J 6(7):2397–2404PubMedGoogle Scholar
  43. 43.
    Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28(5):385–397PubMedCrossRefGoogle Scholar
  44. 44.
    Allison DD, Grande-Allen KJ (2006) Review. Hyaluronan: a powerful tissue engineering tool. Tissue Eng 12(8):2131–2140PubMedCrossRefGoogle Scholar
  45. 45.
    Lesley J, Hyman R, Kincade PW (1993) CD44 and its interaction with extracellular matrix. Adv Immunol 54:271–335PubMedCrossRefGoogle Scholar
  46. 46.
    Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR (1998) Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release 53(1):93–103PubMedCrossRefGoogle Scholar
  47. 47.
    van Wachem PB, van Luyn MJ, Olde Damink LH, Dijkstra PJ, Feijen J, Nieuwenhuis P (1994) Tissue regenerating capacity of carbodiimide-crosslinked dermal sheep collagen during repair of the abdominal wall. Int J Artif Organs 17(4):230–239PubMedGoogle Scholar
  48. 48.
    Lorentz KM, Kontos S, Frey P, Hubbell JA (2011) Engineered aprotinin for improved stability of fibrin biomaterials. Biomaterials 32(2):430–438PubMedCrossRefGoogle Scholar
  49. 49.
    Wissink MJ, Beernink R, Poot AA, Engbers GH, Beugeling T, van Aken WG et al (2000) Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J Control Release 64(1–3):103–114PubMedCrossRefGoogle Scholar
  50. 50.
    Pike DB, Cai S, Pomraning KR, Firpo MA, Fisher RJ, Shu XZ et al (2006) Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials 27(30):5242–5251PubMedCrossRefGoogle Scholar
  51. 51.
    Sakiyama-Elbert SE, Hubbell JA (2000) Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release 65(3):389–402PubMedCrossRefGoogle Scholar
  52. 52.
    Sakiyama SE, Schense JC, Hubbell JA (1999) Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering. FASEB J 13(15):2214–2224PubMedGoogle Scholar
  53. 53.
    Martino MM, Hubbell JA (2010) The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J 24(12):4711–4721PubMedCrossRefGoogle Scholar
  54. 54.
    Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA (2001) Covalently conjugated VEGF–fibrin matrices for endothelialization. J Control Release 72(1–3):101–113PubMedCrossRefGoogle Scholar
  55. 55.
    Schmoekel HG, Weber FE, Schense JC, Gratz KW, Schawalder P, Hubbell JA (2005) Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnol Bioeng 89(3):253–262PubMedCrossRefGoogle Scholar
  56. 56.
    Lorentz KM, Yang L, Frey P, Hubbell JA (2012) Engineered insulin-like growth factor-1 for improved smooth muscle regeneration. Biomaterials 33(2):494–503PubMedCrossRefGoogle Scholar
  57. 57.
    Lienemann PS, Lutolf MP, Ehrbar M (2012) Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev 64(12):1078–1089PubMedCrossRefGoogle Scholar
  58. 58.
    Sakiyama-Elbert SE, Hubbell JA (2000) Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. J Control Release 69(1):149–158PubMedCrossRefGoogle Scholar
  59. 59.
    Johnson PJ, Parker SR, Sakiyama‐Elbert SE (2010) Fibrin‐based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury. J Biomed Mater Res Pt A 92(1):152–163CrossRefGoogle Scholar
  60. 60.
    Johnson PJ, Tatara A, Shiu A, Sakiyama-Elbert SE (2010) Controlled release of neurotrophin-3 and platelet derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplant 19(1):89PubMedCrossRefGoogle Scholar
  61. 61.
    Taylor SJ, McDonald JW III, Sakiyama-Elbert SE (2004) Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J Control Release 98(2):281–294PubMedCrossRefGoogle Scholar
  62. 62.
    Taylor SJ, Rosenzweig ES, McDonald JW III, Sakiyama-Elbert SE (2006) Delivery of neurotrophin-3 from fibrin enhances neuronal fiber sprouting after spinal cord injury. J Control Release 113(3):226–235PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Taylor SJ, Sakiyama-Elbert SE (2006) Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model. J Control Release 116(2):204–210PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sakiyama-Elbert SE, Das R, Gelberman RH, Harwood F, Amiel D, Thomopoulos S (2008) Controlled-release kinetics and biologic activity of platelet-derived growth factor-BB for use in flexor tendon repair. J Hand Surgery 33(9):1548–1557CrossRefGoogle Scholar
  65. 65.
    Thomopoulos S, Zaegel M, Das R, Harwood FL, Silva MJ, Amiel D et al (2007) PDGF‐BB released in tendon repair using a novel delivery system promotes cell proliferation and collagen remodeling. J Orthop Res 25(10):1358–1368PubMedCrossRefGoogle Scholar
  66. 66.
    Wissink M, Beernink R, Scharenborg N, Poot A, Engbers G, Beugeling T et al (2000) Endothelial cell seeding of (heparinized) collagen matrices: effects of bFGF pre-loading on proliferation (after low density seeding) and pro-coagulant factors. J Control Release 67(2):141–155PubMedCrossRefGoogle Scholar
  67. 67.
    Grieb G, Groger A, Piatkowski A, Markowicz M, Steffens G, Pallua N (2009) Tissue substitutes with improved angiogenic capabilities: an in vitro investigation with endothelial cells and endothelial progenitor cells. Cells Tissues Organs 191(2):96–104PubMedCrossRefGoogle Scholar
  68. 68.
    Markowicz M, Heitland A, Steffens G, Pallua N (2005) Effects of modified collagen matrices on human umbilical vein endothelial cells. Int J Artif Organs 28(12):1251PubMedGoogle Scholar
  69. 69.
    Steffens G, Yao C, Prevel P, Markowicz M, Schenck P, Noah E et al (2004) Modulation of angiogenic potential of collagen matrices by covalent incorporation of heparin and loading with vascular endothelial growth factor. Tissue Eng 10(9–10):1502–1509PubMedCrossRefGoogle Scholar
  70. 70.
    Van Wachem P, Plantinga J, Wissink M, Beernink R, Poot A, Engbers G et al (2001) In vivo biocompatibility of carbodiimide‐crosslinked collagen matrices: effects of crosslink density, heparin immobilization, and bFGF loading. J Biomed Mater Res 55(3):368–378PubMedCrossRefGoogle Scholar
  71. 71.
    Wissink M, Beernink R, Pieper J, Poot A, Engbers G, Beugeling T et al (2001) Binding and release of basic fibroblast growth factor from heparinized collagen matrices. Biomaterials 22(16):2291–2299PubMedCrossRefGoogle Scholar
  72. 72.
    Bladergroen BA, Siebum B, Siebers-Vermeulen KG, Van Kuppevelt TH, Poot AA, Feijen J et al (2008) In vivo recruitment of hematopoietic cells using stromal cell–derived factor 1 alpha–loaded heparinized three-dimensional collagen scaffolds. Tissue Eng Part A 15(7):1591–1599CrossRefGoogle Scholar
  73. 73.
    Martino MM, Tortelli F, Mochizuki M, Traub S, Ben-David D, Kuhn GA et al (2011) Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med 3(100):100ra89PubMedCrossRefGoogle Scholar
  74. 74.
    Zhao W, Han Q, Lin H, Sun W, Gao Y, Zhao Y et al (2008) Human basic fibroblast growth factor fused with Kringle4 peptide binds to a fibrin scaffold and enhances angiogenesis. Tissue Eng Part A 15(5):991–998CrossRefGoogle Scholar
  75. 75.
    Zhao W, Han Q, Lin H, Gao Y, Sun W, Zhao Y et al (2008) Improved neovascularization and wound repair by targeting human basic fibroblast growth factor (bFGF) to fibrin. J Mol Med 86(10):1127–1138PubMedCrossRefGoogle Scholar
  76. 76.
    Yang Y, Zhao Y, Chen B, Han Q, Sun W, Xiao Z et al (2009) Collagen-binding human epidermal growth factor promotes cellularization of collagen scaffolds. Tissue Eng Part A 15(11):3589–3596PubMedCrossRefGoogle Scholar
  77. 77.
    Sun W, Lin H, Xie H, Chen B, Zhao W, Han Q et al (2007) Collagen membranes loaded with collagen-binding human PDGF-BB accelerate wound healing in a rabbit dermal ischemic ulcer model. Growth Factors 25(5):309–318PubMedCrossRefGoogle Scholar
  78. 78.
    Han Q, Sun W, Lin H, Zhao W, Gao Y, Zhao Y et al (2009) Linear ordered collagen scaffolds loaded with collagen-binding brain-derived neurotrophic factor improve the recovery of spinal cord injury in rats. Tissue Eng Part A 15(10):2927–2935PubMedCrossRefGoogle Scholar
  79. 79.
    Bentz H, Schroeder J, Estridge T (1998) Improved local delivery of TGF‐β2 by binding to injectable fibrillar collagen via difunctional polyethylene glycol. J Biomed Mater Res 39(4):539–548PubMedCrossRefGoogle Scholar
  80. 80.
    Koch S, Yao C, Grieb G, Prevel P, Noah EM, Steffens GC (2006) Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF. J Mater Sci Mater Med 17(8):735–741PubMedCrossRefGoogle Scholar
  81. 81.
    Shen YH, Shoichet MS, Radisic M (2008) Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater 4(3):477–489PubMedCrossRefGoogle Scholar
  82. 82.
    Geer DJ, Swartz DD, Andreadis ST (2005) Biomimetic delivery of keratinocyte growth factor upon cellular demand for accelerated wound healing in vitro and in vivo. Am J Pathol 167(6):1575–1586PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Zhang G, Nakamura Y, Wang X, Hu Q, Suggs LJ, Zhang J (2007) Controlled release of stromal cell-derived factor-1alpha in situ increases c-kit + cell homing to the infarcted heart. Tissue Eng 13(8):2063–2071PubMedCrossRefGoogle Scholar
  84. 84.
    Sakiyama-Elbert SE, Panitch A, Hubbell JA (2001) Development of growth factor fusion proteins for cell-triggered drug delivery. FASEB J 15(7):1300–1302PubMedGoogle Scholar
  85. 85.
    Ehrbar M, Djonov VG, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U et al (2004) Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 94(8):1124–1132PubMedCrossRefGoogle Scholar
  86. 86.
    Ehrbar M, Metters A, Zammaretti P, Hubbell JA, Zisch AH (2005) Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release 101(1):93–109PubMedCrossRefGoogle Scholar
  87. 87.
    Ehrbar M, Zeisberger SM, Raeber GP, Hubbell JA, Schnell C, Zisch AH (2008) The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials 29(11):1720–1729PubMedCrossRefGoogle Scholar
  88. 88.
    Weber CC, Cai H, Ehrbar M, Kubota H, Martiny-Baron G, Weber W et al (2005) Effects of protein and gene transfer of the angiopoietin-1 fibrinogen-like receptor-binding domain on endothelial and vessel organization. J Biol Chem 280(23):22445–22453PubMedCrossRefGoogle Scholar
  89. 89.
    Zisch AH, Zeisberger SM, Ehrbar M, Djonov V, Weber CC, Ziemiecki A et al (2004) Engineered fibrin matrices for functional display of cell membrane-bound growth factor-like activities: study of angiogenic signaling by ephrin-B2. Biomaterials 25(16):3245–3257PubMedCrossRefGoogle Scholar
  90. 90.
    Hall H, Djonov V, Ehrbar M, Hoechli M, Hubbell JA (2004) Heterophilic interactions between cell adhesion molecule L1 and αv β3-integrin induce HUVEC process extension in vitro and angiogenesis in vivo. Angiogenesis 7(3):213–223PubMedCrossRefGoogle Scholar
  91. 91.
    Lühmann T, Hänseler P, Grant B, Hall H (2009) The induction of cell alignment by covalently immobilized gradients of the 6th Ig-like domain of cell adhesion molecule L1 in 3D-fibrin matrices. Biomaterials 30(27):4503–4512PubMedCrossRefGoogle Scholar
  92. 92.
    Pittier R, Sauthier F, Hubbell JA, Hall H (2005) Neurite extension and in vitro myelination within three‐dimensional modified fibrin matrices. J Neurobiol 63(1):1–14PubMedCrossRefGoogle Scholar
  93. 93.
    Arrighi I, Mark S, Alvisi M, von Rechenberg B, Hubbell JA, Schense JC (2009) Bone healing induced by local delivery of an engineered parathyroid hormone prodrug. Biomaterials 30(9):1763–1771PubMedCrossRefGoogle Scholar
  94. 94.
    Martino MM, Briquez PS, Guc E, Tortelli F, Kilarski WW, Metzger S et al (2014) Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science 343(6173):885–888PubMedCrossRefGoogle Scholar
  95. 95.
    Largo RA, Ramakrishnan VM, Marschall JS, Ziogas A, Banfi A, Eberli D et al (2014) Long-term biostability and bioactivity of “fibrin linked” VEGF(121) in vitro and in vivo. Biomater Sci-Uk 2(4):581–590CrossRefGoogle Scholar
  96. 96.
    Ehrbar M, Schoenmakers R, Christen EH, Fussenegger M, Weber W (2008) Drug-sensing hydrogels for the inducible release of biopharmaceuticals. Nat Mater 7(10):800–804PubMedCrossRefGoogle Scholar
  97. 97.
    Peppas N (2004) Devices based on intelligent biopolymers for oral protein delivery. Int J Pharm 277(1):11–17PubMedCrossRefGoogle Scholar
  98. 98.
    Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670PubMedCrossRefGoogle Scholar
  99. 99.
    Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373(6509):49–52PubMedCrossRefGoogle Scholar
  100. 100.
    Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3 T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11(5):439–457PubMedCrossRefGoogle Scholar
  101. 101.
    Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS (2009) Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30(35):6702–6707PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hu B-H, Su J, Messersmith PB (2009) Hydrogels cross-linked by native chemical ligation. Biomacromolecules 10(8):2194–2200PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Takahashi A, Suzuki Y, Suhara T, Omichi K, Shimizu A, Hasegawa K et al (2013) In situ cross-linkable hydrogel of hyaluronan produced via copper-free click chemistry. Biomacromolecules 14(10):3581–3588PubMedCrossRefGoogle Scholar
  104. 104.
    Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100(9):5413–5418PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Deforest CA, Sims EA, Anseth KS (2010) Peptide-functionalized click hydrogels with independently tunable mechanics and chemical functionality for 3D cell CULTURE. Chem Mater 22(16):4783–4790PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Jung JP, Moyano JV, Collier JH (2011) Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices. Integr Biol (Camb) 3(3):185–196CrossRefGoogle Scholar
  107. 107.
    Tong X, Yang F (2014) Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties. Biomaterials 35(6):1807–1815PubMedCrossRefGoogle Scholar
  108. 108.
    Ehrbar M, Rizzi SC, Schoenmakers RG, Miguel BS, Hubbell JA, Weber FE et al (2007) Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 8(10):3000–3007PubMedCrossRefGoogle Scholar
  109. 109.
    Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188(1):11–19PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Ehrbar M, Sala A, Lienemann P, Ranga A, Mosiewicz K, Bittermann A et al (2011) Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys J 100(2):284–293PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Bott K, Upton Z, Schrobback K, Ehrbar M, Hubbell JA, Lutolf MP et al (2010) The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials 31(32):8454–8464PubMedCrossRefGoogle Scholar
  112. 112.
    Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309(5963):30–33PubMedCrossRefGoogle Scholar
  113. 113.
    Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31(17):4639–4656PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Kohn J, Langer R, Ratner B, Hoffman A, Schoen F, Lemons J (1996) Biomaterials science: an introduction to materials in medicine. Academic, San Diego, pp 64–73Google Scholar
  115. 115.
    Patterson J, Hubbell JA (2010) Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31(30):7836–7845PubMedCrossRefGoogle Scholar
  116. 116.
    Patterson J, Hubbell JA (2011) SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials 32(5):1301–1310PubMedCrossRefGoogle Scholar
  117. 117.
    Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ (2012) Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev 64(12):1257–1276PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    DeLong SA, Moon JJ, West JL (2005) Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26(16):3227–3234PubMedCrossRefGoogle Scholar
  119. 119.
    Saik JE, Gould DJ, Keswani AH, Dickinson ME, West JL (2011) Biomimetic hydrogels with immobilized ephrinA1 for therapeutic angiogenesis. Biomacromolecules 12(7):2715–2722PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Mann BK, Schmedlen RH, West JL (2001) Tethered-TGF- β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22(5):439–444PubMedCrossRefGoogle Scholar
  121. 121.
    Gobin AS, West JL (2003) Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels. Biotechnol Prog 19(6):1781–1785PubMedCrossRefGoogle Scholar
  122. 122.
    Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL (2011) Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly (ethylene glycol) hydrogels. Acta Biomater 7(1):133–143PubMedCrossRefGoogle Scholar
  123. 123.
    He X, Ma J, Jabbari E (2008) Effect of grafting RGD and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells. Langmuir 24(21):12508–12516PubMedCrossRefGoogle Scholar
  124. 124.
    Leipzig ND, Xu C, Zahir T, Shoichet MS (2010) Functional immobilization of interferon‐gamma induces neuronal differentiation of neural stem cells. J Biomed Mater Res A 93(2):625–633PubMedGoogle Scholar
  125. 125.
    Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N et al (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 17(15):2260–2262PubMedGoogle Scholar
  126. 126.
    Seliktar D, Zisch A, Lutolf M, Wrana J, Hubbell J (2004) MMP‐2 sensitive, VEGF‐bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res A 68(4):704–716PubMedCrossRefGoogle Scholar
  127. 127.
    Ehrbar M, Rizzi SC, Hlushchuk R, Djonov V, Zisch AH, Hubbell JA et al (2007) Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering. Biomaterials 28(26):3856–3866PubMedCrossRefGoogle Scholar
  128. 128.
    Riley CM, Fuegy PW, Firpo MA, Zheng Shu X, Prestwich GD, Peattie RA (2006) Stimulation of in vivo angiogenesis using dual growth factor-loaded crosslinked glycosaminoglycan hydrogels. Biomaterials 27(35):5935–5943PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Zhao J, Zhang N, Prestwich GD, Wen X (2008) Recruitment of endogenous stem cells for tissue repair. Macromol Biosci 8(9):836–842PubMedCrossRefGoogle Scholar
  130. 130.
    Hosack LW, Firpo MA, Scott JA, Prestwich GD, Peattie RA (2008) Microvascular maturity elicited in tissue treated with cytokine-loaded hyaluronan-based hydrogels. Biomaterials 29(15):2336–2347PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Liu Y, Cai S, Shu XZ, Shelby J, Prestwich GD (2007) Release of basic fibroblast growth factor from a crosslinked glycosaminoglycan hydrogel promotes wound healing. Wound Repair Regen 15(2):245–251PubMedCrossRefGoogle Scholar
  132. 132.
    Cai S, Liu Y, Zheng Shu X, Prestwich GD (2005) Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26(30):6054–6067PubMedCrossRefGoogle Scholar
  133. 133.
    Tae G, Scatena M, Stayton PS, Hoffman AS (2006) PEG-cross-linked heparin is an affinity hydrogel for sustained release of vascular endothelial growth factor. J Biomater Sci Polym Ed 17(1–2):187–197PubMedCrossRefGoogle Scholar
  134. 134.
    Freudenberg U, Hermann A, Welzel PB, Stirl K, Schwarz SC, Grimmer M et al (2009) A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30(28):5049–5060PubMedCrossRefGoogle Scholar
  135. 135.
    Tsurkan MV, Chwalek K, Prokoph S, Zieris A, Levental KR, Freudenberg U et al (2013) Defined polymer-peptide conjugates to form cell-instructive starPEG-heparin matrices in situ. Adv Mater 25(18):2606–2610PubMedCrossRefGoogle Scholar
  136. 136.
    Zhang L, Furst EM, Kiick KL (2006) Manipulation of hydrogel assembly and growth factor delivery via the use of peptide–polysaccharide interactions. J Control Release 114(2):130–142PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Yamaguchi N, Kiick KL (2005) Polysaccharide-poly (ethylene glycol) star copolymer as a scaffold for the production of bioactive hydrogels. Biomacromolecules 6(4):1921–1930PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Nie T, Baldwin A, Yamaguchi N, Kiick KL (2007) Production of heparin-functionalized hydrogels for the development of responsive and controlled growth factor delivery systems. J Control Release 122(3):287–296PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Yamaguchi N, Zhang L, Chae B-S, Palla CS, Furst EM, Kiick KL (2007) Growth factor mediated assembly of cell receptor-responsive hydrogels. J Am Chem Soc 129(11):3040–3041PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Benoit DS, Anseth KS (2005) Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. Acta Biomater 1(4):461–470PubMedCrossRefGoogle Scholar
  141. 141.
    Pratt AB, Weber FE, Schmoekel HG, Müller R, Hubbell JA (2004) Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng 86(1):27–36PubMedCrossRefGoogle Scholar
  142. 142.
    Lin CC, Anseth KS (2009) Controlling affinity binding with peptide‐functionalized poly (ethylene glycol) hydrogels. Adv Funct Mater 19(14):2325–2331PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Lienemann PS, Karlsson M, Sala A, Wischhusen HM, Weber FE, Zimmermann R et al (2013) A versatile approach to engineering biomolecule-presenting cellular microenvironments. Adv Healthc Mater 2(2):292–296PubMedCrossRefGoogle Scholar
  144. 144.
    Karlsson M, Lienemann PS, Sprossmann N, Heilmann K, Brummer T, Lutolf MP et al (2013) A generic strategy for pharmacological caging of growth factors for tissue engineering. Chem Commun (Camb) 49(53):5927–5929CrossRefGoogle Scholar
  145. 145.
    Gubeli RJ, Laird D, Ehrbar M, Ritter BS, Steinberg T, Tomakidi P et al (2013) Pharmacologically tunable polyethylene-glycol-based cell growth substrate. Acta Biomater 9(9):8272–8278PubMedCrossRefGoogle Scholar
  146. 146.
    Mosiewicz KA, Kolb L, van der Vlies AJ, Martino MM, Lienemann PS, Hubbell JA et al (2013) In situ cell manipulation through enzymatic hydrogel photopatterning. Nat Mater 12(11):1072–1078PubMedCrossRefGoogle Scholar
  147. 147.
    Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA (2013) Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci 110(12):4563–4568PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Bentz H, Schroeder JA, Estridge TD (1998) Improved local delivery of TGF-beta2 by binding to injectable fibrillar collagen via difunctional polyethylene glycol. J Biomed Mater Res 39(4):539–548PubMedCrossRefGoogle Scholar
  149. 149.
    Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22(5):405–417PubMedCrossRefGoogle Scholar
  150. 150.
    Moriyama K, Minamihata K, Wakabayashi R, Goto M, Kamiya N (2013) Enzymatic preparation of streptavidin-immobilized hydrogel using a phenolated linear poly(ethylene glycol). Biochem Eng J 76:37–42CrossRefGoogle Scholar
  151. 151.
    Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA (2013) Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci USA 110(12):4563–4568PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Shah RN, Shah NA, Del Rosario Lim MM, Hsieh C, Nuber G, Stupp SI (2010) Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci USA 107(8):3293–3298PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Chen AA, Underhill GH, Bhatia SN (2010) Multiplexed, high-throughput analysis of 3D microtissue suspensions. Integr Biol (Camb) 2(10):517–527CrossRefGoogle Scholar
  154. 154.
    Xu F, Wu CA, Rengarajan V, Finley TD, Keles HO, Sung Y et al (2011) Three-dimensional magnetic assembly of microscale hydrogels. Adv Mater 23(37):4254–4260PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Eng G, Lee BW, Parsa H, Chin CD, Schneider J, Linkov G et al (2013) Assembly of complex cell microenvironments using geometrically docked hydrogel shapes. Proc Natl Acad Sci USA 110(12):4551–4556PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Leong MF, Toh JK, Du C, Narayanan K, Lu HF, Lim TC et al (2013) Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat Commun 4:2353PubMedCrossRefGoogle Scholar
  157. 157.
    Fernandez JG, Khademhosseini A (2010) Micro-masonry: construction of 3D structures by microscale self-assembly. Adv Mater 22(23):2538–2541PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Sala A, Hanseler P, Ranga A, Lutolf MP, Voros J, Ehrbar M et al (2011) Engineering 3D cell instructive microenvironments by rational assembly of artificial extracellular matrices and cell patterning. Integr Biol (Camb) 3(11):1102–1111CrossRefGoogle Scholar
  160. 160.
    Milleret V, Simona BR, Lienemann PS, Voros J, Ehrbar M (2014) Electrochemical control of the enzymatic polymerization of PEG hydrogels: formation of spatially controlled biological microenvironments. Adv Healthc Mater 3:508–514PubMedCrossRefGoogle Scholar
  161. 161.
    Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R (2010) Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10(16):2062–2070PubMedCrossRefGoogle Scholar
  162. 162.
    Wylie RG, Ahsan S, Aizawa Y, Maxwell KL, Morshead CM, Shoichet MS (2011) Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat Mater 10(10):799–806PubMedCrossRefGoogle Scholar
  163. 163.
    Cosson S, Allazetta S, Lutolf MP (2013) Patterning of cell-instructive hydrogels by hydrodynamic flow focusing. Lab Chip 13(11):2099–2105PubMedCrossRefGoogle Scholar
  164. 164.
    Cheung YK, Gillette BM, Zhong M, Ramcharan S, Sia SK (2007) Direct patterning of composite biocompatible microstructures using microfluidics. Lab Chip 7(5):574–579PubMedCrossRefGoogle Scholar
  165. 165.
    Lee H, Choi B, Moon H, Choi J, Park K, Jeong B et al (2012) Chondrocyte 3D-culture in RGD-modified crosslinked hydrogel with temperature-controllable modulus. Macromol Res 20(1):106–111CrossRefGoogle Scholar
  166. 166.
    Davis KA, Burke KA, Mather PT, Henderson JH (2011) Dynamic cell behavior on shape memory polymer substrates. Biomaterials 32(9):2285–2293PubMedCrossRefGoogle Scholar
  167. 167.
    Klouda L, Perkins KR, Watson BM, Hacker MC, Bryant SJ, Raphael RM et al (2011) Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: Fabrication, characterization and mesenchymal stem cell encapsulation. Acta Biomater 7(4):1460–1467PubMedCrossRefGoogle Scholar
  168. 168.
    Garbern JC, Hoffman AS, Stayton PS (2010) Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromolecules 11(7):1833–1839PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Fuhrer R, Athanassiou EK, Luechinger NA, Stark WJ (2009) Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. Small 5(3):383–388PubMedCrossRefGoogle Scholar
  170. 170.
    Gubeli RJ, Ehrbar M, Fussenegger M, Friedrich C, Weber W (2012) Synthesis and characterization of PEG-based drug-responsive biohybrid hydrogels. Macromol Rapid Commun 33(15):1280–1285PubMedCrossRefGoogle Scholar
  171. 171.
    Kim SH, Kiick KL (2010) Cell-mediated delivery and targeted erosion of vascular endothelial growth factor-crosslinked hydrogels. Macromol Rapid Commun 31(14):1231–1240PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    King WJ, Mohammed JS, Murphy WL (2009) Modulating growth factor release from hydrogels via a protein conformational change. Soft Matter 5(12):2399–2406CrossRefGoogle Scholar
  173. 173.
    Khetan S, Burdick JA (2011) Patterning hydrogels in three dimensions towards controlling cellular interactions. Soft Matter 7(3):830–838CrossRefGoogle Scholar
  174. 174.
    DeForest CA, Anseth KS (2012) Photoreversible patterning of biomolecules within click-based hydrogels. Angew Chem Int Ed Engl 51(8):1816–1819PubMedCrossRefGoogle Scholar
  175. 175.
    Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324(5923):59–63PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Khetan S, Katz JS, Burdick JA (2009) Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels. Soft Matter 5(8):1601–1606CrossRefGoogle Scholar
  177. 177.
    Ellis-Davies GC (2007) Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat Methods 4(8):619–628PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Griffin DR, Borrajo J, Soon A, Acosta-Velez GF, Oshita V, Darling N et al (2014) Hybrid photopatterned enzymatic reaction (HyPER) for in situ cell manipulation. Chembiochem 15(2):233–242PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Karlsson M, Rebmann B, Lienemann PS, Sprossmann N, Ehrbar M, Radziwill G et al (2013) Pharmacologically controlled protein switch for ON-OFF regulation of growth factor activity. Sci Rep 3:2716PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495PubMedCrossRefGoogle Scholar
  181. 181.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689PubMedCrossRefGoogle Scholar
  182. 182.
    Guvendiren M, Burdick JA (2012) Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun 3:792PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of ObstetricsUniversity Hospital Zurich, PATHZurichSwitzerland
  2. 2.Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.Zurich Centre for Integrative Human PhysiologyZurichSwitzerland

Personalised recommendations