Graft Planning

  • Tomoaki SuzukiEmail author
  • Tohru AsaiEmail author


With the development of the OPCAB technique, the current trend in CABG is toward in situ arterial reconstruction because of the benefit of the aorta no-touch technique and the better long-term clinical outcomes (Endo M, Nishida H, Tomizawa Y, Kasanuki H, Circulation 104:2164–2170, 2001). An arterial graft produces better late graft patency and better long-term patient outcomes than vein graft. Now we have three reliable in situ arteries (both internal thoracic arteries (ITA) and right gastroepiploic artery (GEA)) and one free graft (radial artery). As we all know, the use of the ITA is associated with low rates of mortality and reintervention. Furthermore, some recent reports demonstrate that bilateral internal thoracic artery grafting to the left anterior descending and circumflex coronary arteries offers the best long-term survival and lowest rates of reintervention (Rizzoli G, Schiavon L, Bellini P, Eur J Cardiathorac Surg 22:781–786, 2002; Taggart DP, D’Amico R, Altman DG, Lancet 358:870–875, 2001; Lytle BW, Blackstone EH, Loop FD et al., J Thorac Cardiovasc Surg 117:855–872. 1999). In the decade since Buxton and coworkers (Buxton BF, Komeda M, Fuller JA, Gordon I, Circulation 98:II-1–II-6, 1998) and Lytle and coworkers (Lytle BW, Blackstone EH, Loop FD et al., J Thorac Cardiovasc Surg 117:855–872. 1999) revealed the long-term efficacy of bilateral ITA grafting, it has been gaining acceptance among surgeons, and there is no doubt that it affords the best long-term outcome. CABG with grafting of the bilateral ITAs to the left coronary system and additionally the GEA to the distal RCA has been reported to provide good long-term outcome (Chavanon O, Durand M, Hacini R et al., Ann Thorac Surg 73:499–504, 2002; Tavilla G, Kappetein AP, Braum J, Gopie J, Tjien ATJ, Dion RAE, Ann Thorac Surg 77:794–799, 2004; Suzuki T, Asai T, Matsubayashi K et al., Ann Thorac Surg 91:1159–1164, 2011).

For high-quality OPCAB, the skeletonization technique is now essential that makes the arterial graft into optimum condition. Skeletonization has many advantages, such as avoidance of early spasm, easy identification of potential bleeding, quality of the vessel, functionally lengthened and larger graft with maximum flow, ease in performing sequential anastomosis, and preservation of sternal blood flow and venous drainage.

In this chapter, I discuss the optimal grafting model using multiple arterial conduits.


Aorta no-touch Composite graft In situ graft 


  1. 1.
    Endo M, Nishida H, Tomizawa Y, Kasanuki H (2001) Benefit of bilateral over single internal mammary artery grafts for multiple coronary artery bypass grafting. Circulation 104:2164–2170CrossRefPubMedGoogle Scholar
  2. 2.
    Rizzoli G, Schiavon L, Bellini P (2002) Does the use of bilateral internal mammary artery (IMA) grafts provide incremental benefit relative to the use of a single IMA graft? A meta-analysis approach. Eur J Cardiathorac Surg 22:781–786CrossRefGoogle Scholar
  3. 3.
    Taggart DP, D’Amico R, Altman DG (2001) Effect of arterial revascularization on survival: a systematic review of studies comparing bilateral and single internal mammary arteries. Lancet 358:870–875CrossRefPubMedGoogle Scholar
  4. 4.
    Lytle BW, Blackstone EH, Loop FD et al (1999) Two internal thoracic artery grafts are better than one. J Thorac Cardiovasc Surg 117:855–872CrossRefPubMedGoogle Scholar
  5. 5.
    Buxton BF, Komeda M, Fuller JA, Gordon I (1998) Bilateral internal thoracic artery grafting may improve outcomes of coronary artery surgery, risk-adjusted survival. Circulation 98:II-1–II-6CrossRefGoogle Scholar
  6. 6.
    Chavanon O, Durand M, Hacini R et al (2002) Coronary artery bypass grafting with left internal mammary artery and right gastroepiploic artery, with and without bypass. Ann Thorac Surg 73:499–504CrossRefPubMedGoogle Scholar
  7. 7.
    Tavilla G, Kappetein AP, Braum J, Gopie J, Tjien ATJ, Dion RAE (2004) Long-term follow-up of coronary artery bypass grafting in three-vessel disease using exclusively pedicled bilateral internal thoracic and right gastroepiploic arteries. Ann Thorac Surg 77:794–799CrossRefPubMedGoogle Scholar
  8. 8.
    Suzuki T, Asai T, Matsubayashi K et al (2011) In off-pump surgery, skeletonized gastroepiploic artery is superior to saphenous vein in patients with bilateral internal thoracic arterial grafts. Ann Thorac Surg 91:1159–1164CrossRefPubMedGoogle Scholar
  9. 9.
    Higami T, Yamashita T, Nohara H, Iwahashi K, Shida T, Ogawa K (2001) Early results of coronary grafting using ultrasonically skeletonized internal thoracic. Ann Thorac Surg 71:1224–1228CrossRefPubMedGoogle Scholar
  10. 10.
    Pym J, Brown PM, Charrete EJ, Parker JO, West RO (1987) Gastroepiploic-coronary anastomosis. A viable alternative bypass graft. J Thorac Cardiovasc Surg 94:256–259PubMedGoogle Scholar
  11. 11.
    Suma H, Fukumoto H, Takeuchi A (1987) Coronary artery bypass grafting by utilizing in situ right gastroepiploic artery: basic study and clinical application. Ann Thorac Surg 44:394–397CrossRefPubMedGoogle Scholar
  12. 12.
    Suma H, Tanabe H, Takahashi A et al (2007) Twenty years experience with the gastroepiploic artery graft for CABG. Circulation 116(1):I-188–I-191Google Scholar
  13. 13.
    Gagliardotto P, Coste P, Lazerg M, Dor V (1998) Skeletonized right gastroepiploic artery used for coronary artery bypass grafting. Ann Thorac Surg 66:240–242CrossRefPubMedGoogle Scholar
  14. 14.
    Asai T, Tabata S (2000) Skeletonization of the right gastroepiploic artery using an ultrasonic scalpel. Ann Thorac Surg 74:1715–1717CrossRefGoogle Scholar
  15. 15.
    Kim KB, Cho KR, Choi JS, Lee HJ (2006) Right gastroepiploic artery for revascularization of right coronary territory in off-pump total arterial revascularization: strategies to improve patency. Ann Thorac Surg 81:2135–2141CrossRefPubMedGoogle Scholar
  16. 16.
    Ali E, Saso S, Ashrafian H, Athanasiou T (2010) Does a skeletonized or pedicled right gastro-epiploic artery improve patency when used as a conduit in coronary artery bypass graft surgery? Interact CardioVasc Thorac Surg 10:293–298CrossRefPubMedGoogle Scholar
  17. 17.
    Suzuki T, Asai T, Nota H et al (2013) Early and long-term patency of in situ skeletonized gastroepiploic artery after off-pump coronary artery bypass graft surgery. Ann Thorac Surg 96:90–95CrossRefPubMedGoogle Scholar
  18. 18.
    Carpentier A, Guemonprez JL, Deloche A, Frechette C, Dubost C (1973) The aorta-to-coronary radial artery bypass graft: a technique to avoid pathological changes in graft. Ann Thorac Surg 16:111–121CrossRefPubMedGoogle Scholar
  19. 19.
    Kapetanakis EI, Stamou SC, Dullum MKC et al (2004) The impact of aortic manipulation on neurological outcomes after coronary artery bypass surgery: a risk-adjusted study. Ann Thorac Surg 78:1564–1571CrossRefPubMedGoogle Scholar
  20. 20.
    Kim WS, Lee J, Lee YT, Sung K, Yang JH, Jum TG et al (2008) Total arterial revascularization in triple-vessel disease with off-pump and aortic no-touch technique. Ann Thorac Surg 86:1861–1865CrossRefPubMedGoogle Scholar
  21. 21.
    Misfeld M, Brereton JL, Sweetman EA, Doig GS (2011) Neurologic complications after off-pump coronary artery bypass grafting with and without aortic manipulation: meta-analysis of 11398 cases from 8 studies. J Thorac Cardiovasc Surg 142:e11–e17CrossRefPubMedGoogle Scholar
  22. 22.
    Lev-Ran O, Braunstein R, Sharony R, Kramer A, Paz Y, Mohr R et al (2005) No-touch aorta off-pump coronary surgery: the effect on stroke. J Thorac Cardiovasc Surg 129:307–313CrossRefPubMedGoogle Scholar
  23. 23.
    Kim KB, Kang CH, Chang W-I, Lim C, Kim JH, Ham BM et al (2002) Off-pump coronary artery bypass with complete avoidance of aortic manipulation. Ann Thorac Surg 74:S1377–S1382CrossRefPubMedGoogle Scholar
  24. 24.
    Lev-Ran O, Paz Y, Penvi D, Kramer A, Shapira I, Locker C, Mohr R (2002) Bilateral internal thoracic artery grafting: midterm results of composite versus in situ crossover graft. Ann Thorac Surg 74:704–711CrossRefPubMedGoogle Scholar
  25. 25.
    Legare JF, Buth KJ, Sullivan JA, Hirsch GM (2004) Composite arterial grafts versus conventional grafting for coronary artery bypass grafting. J Thorac Cardiovasc Surg 127:160–166CrossRefPubMedGoogle Scholar
  26. 26.
    Hwang HY, Kim JS, Cho KR, Kim KB (2011) Bilateral internal thoracic artery in situ versus Y-composite graftings: five-year angiographic patency and long-term clinical outcomes. Ann Thorac Surg 92:579–586CrossRefPubMedGoogle Scholar
  27. 27.
    Nakajima H, Kobayashi J, Tagusari O, Bando K, Niwaya K, Kitamura S (2004) Competitive flow in arterial composite grafts and effect of graft arrangement in off-pump coronary revascularization. Ann Thorac Surg 78:481–486CrossRefPubMedGoogle Scholar
  28. 28.
    Sabik JF III, Lytle BW, Blackstone EH, Khan M, Houghtailing PL, Cosgrove DM (2003) Does competitive flow reduce internal thoracic artery graft patency? Ann Thorac Surg 76:1490–1497CrossRefPubMedGoogle Scholar
  29. 29.
    Manabe S, Fukui T, Shimokawa T, Tabat M, Katayama Y, Morita S, Takanashi S (2010) Increased graft occlusion or string sign in composite arterial grafting for mildly stenosed target vessels. Ann Thorac Surg 89:683–688CrossRefPubMedGoogle Scholar
  30. 30.
    Ura M, Sakata R, Nakayama Y, Aria Y, Oshima S, Noda K (2000) Analysis by early angiography of right internal thoracic artery grafting via the transverse sinus: predictors of graft failure. Circulation 101:640–646CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Division of Cardiovascular Surgery, Department of SurgeryShiga University of Medical ScienceOotsuJapan

Personalised recommendations