Innovations in Measuring Cellular Mechanics

  • Navid Bonakdar
  • Achim Schilling
  • Richard Gerum
  • José Luis Alonso
  • Wolfgang H. Goldmann


This article describes several novel mechanical methods for elucidating cellular responses to different types of mechanical loading (adhesive, pulling, pushing, shearing, and stretching forces). Understanding how cells deform and transmit stresses into the cell is important for gene expression, cytoskeletal remodeling, and focal adhesion reorganization and crucial for a variety of higher fundamental cell functions including cell division, motility, and differentiation. Introducing these unique methods of measuring and understanding cellular mechanics, therefore, provides a valuable platform for cell biology research.


Magnetic tweezer Magnetic twisting cytometry Traction force microscopy Cell poking Plate rheometer Nano-scale tracking 



We thank Dr. Ben Fabry for helpful discussions and Dr. Vicky Jackiw for proofreading the manuscript. This work was supported in part by grants from Deutscher Akademischer Austauschdienst (DAAD) and Deutsche Forschungsgemeinschaft (DFG).


  1. Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, Farre R, Navajas D (2003) Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J 84:2071–2079CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alenghat FJ, Fabry B, Tsai KY, Goldmann WH, Ingber DE (2000) Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer. Biochem Biophys Res Commun 277:93–99CrossRefPubMedGoogle Scholar
  3. Alonso JL, Goldmann WH (2012) Influence of divalent cations on the cytoskeletal dynamics of K562 cells determined by nano-scale bead tracking. Biochem Biophys Res Commun 421:245–248CrossRefPubMedGoogle Scholar
  4. An SS, Laudadio RE, Lai J, Rogers RA, Fredberg JJ (2002) Stiffness changes in cultured airway smooth muscle cells. Am J Physiol Cell Physiol 283:C792–C801CrossRefPubMedGoogle Scholar
  5. An SS, Fabry B, Mellema M, Bursac P, Gerthoffer WT, Kayyali US, Gaestel M, Shore SS, Fredberg JJ (2004) Role of heat shock protein 27 in cytoskeletal remodeling of the airway smooth muscle cell. J Appl Physiol 96:1701–1713CrossRefPubMedGoogle Scholar
  6. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472CrossRefPubMedGoogle Scholar
  7. Bonakdar N, Lautscham LA, Czonstke M, Koch TM, Mainka A, Jungbauer T, Goldmann WH, Schröder R, Fabry B (2012) Biomechanical characterization of a desminopathy in primary human myoblasts. Biochem Biophys Res Commun 419:703–707CrossRefPubMedGoogle Scholar
  8. Bonakdar N, Schilling A, Lennert P, Spörrer M, Gerum RC, Alonso JL, Goldmann WH (2014) Measuring mechanical properties in cells: three easy methods for biologists. Cell Biol Int 38:1227–1232CrossRefPubMedGoogle Scholar
  9. Bonakdar N, Schilling A, Sp­rrer M, Lennert P, Mainka A, Winter L, Walko G, Wiche G, Fabry B, Goldmann WH (2015) Determining the mechanical properties of plectin in mouse myoblasts and keratinocytes. Exp Cell Res 331:331–337Google Scholar
  10. Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282:C595–C605CrossRefPubMedGoogle Scholar
  11. Caspi A, Granek R, Elbaum M (2002) Diffusion and directed motion in cellular transport. Phys Rev E Stat Nonlinear Soft Matter Phys 66:011916CrossRefGoogle Scholar
  12. Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin- cytoskeleton linkages. Cell 88:39–48CrossRefPubMedGoogle Scholar
  13. Cohen D, Arai SF, Brain JD (1979) Smoking impairs long-term dust clearance from the lung. Science 204:514–517CrossRefPubMedGoogle Scholar
  14. Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm. Exp Cell Res 1:37–80CrossRefGoogle Scholar
  15. Daily B, Elson EL, Zahalak GL (1984) Cell poking. Determination of the eleastic area compressibility modulus of the erythrocyte membrane. Biophys J 45:671–82Google Scholar
  16. Deng L, Fairbank NJ, Fabry B, Smith PG, Maksym GN (2004) Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells. Am J Physiol Cell Physiol 287:C440–C448CrossRefPubMedGoogle Scholar
  17. Duszyk M, Schwab B 3rd, Zahalak GL, Qian H, Elson EL (1989) Cell poking: quantitative analysis of indentation of thick viscoelastic layers. Biophys J 55:683–90Google Scholar
  18. Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J 56:151–160CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001a) Scaling the microrheology of living cells. Phys Rev Lett 87:148102CrossRefPubMedGoogle Scholar
  20. Fabry B, Maksym GN, Shore SA, Moore PE, Panettieri RA Jr, Butler JP, Fredberg JJ (2001b) Time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. J Appl Physiol 91:986–994PubMedGoogle Scholar
  21. Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Taback AN, Millet EJ, Fredberg JJ (2003) Time scale and other invariants of integrative mechanical behavior in living cells. Phys Rev E 68:041914CrossRefGoogle Scholar
  22. Fernandez P, Heymann L, Ott A, Aksel N, Pullarkat PA (2007) Shear rheology of a cell monolayer. New J Phys 9:1–29CrossRefGoogle Scholar
  23. Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304:1301–1305CrossRefPubMedGoogle Scholar
  24. Giannone G, Jiang G, Sutton DH, Critchley DR, Sheetz MP (2003) Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J Cell Biol 163:409–419CrossRefPubMedPubMedCentralGoogle Scholar
  25. Goldmann WH (2000) Mechanical manipulation of animal cells: cell indentation. Biotechnol Lett 22:431–435CrossRefGoogle Scholar
  26. Goldmann WH (2002) Mechanical aspects of cell shape regulation and signaling. Cell Biol Int 26:313–317CrossRefPubMedGoogle Scholar
  27. Goldmann WH, Ezzell RM (1996) Viscoelasticity in wild-type and vinculin-deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology. Exp Cell Res 226:234–237CrossRefPubMedGoogle Scholar
  28. Goldmann WH, Galneder R, Ludwig M, Xu W, Adamson ED, Wang N, Ezzell RM (1998) Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy. Exp Cell Res 239:235–242CrossRefPubMedGoogle Scholar
  29. Goldmann WH, Alonso JL et al (2000) Cell shape control and mechanical signaling through the cytoskeleton. In: Carraway KL, Carraway CAC (eds) Cytoskeleton: signaling and cell regulation: Chapter 11. Oxford University Press, OxfordGoogle Scholar
  30. Gunst SJ, Fredberg JJ (2003) The first three minutes: smooth muscle contraction, cytoskeletal events, and soft glasses. J Appl Physiol 95:413–425CrossRefPubMedGoogle Scholar
  31. Hartmann MA, Spudich JA (2012) The myosin superfamily at a glance. J Cell Sci 125:1627–1632CrossRefGoogle Scholar
  32. Hill AV (1965) Trails and trials in physiology. E. Arnold, London, pp 14–15Google Scholar
  33. Hu S, Chen J, Fabry B, Numaguchi Y, Gouldstone A, Ingber DE, Fredberg JJ, Butler JP, Wang N (2003) Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol Cell Physiol 285:C1082–C1090CrossRefPubMedGoogle Scholar
  34. Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318PubMedGoogle Scholar
  35. Kawai M, Brandt PW (1980) Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog, and crayfish. J Muscle Res Cell Motil 1:279–303CrossRefPubMedGoogle Scholar
  36. Kollmannsberger P, Fabry B (2007) High-force magnetic tweezers with force feedback for biological applications. Rev Sci Instrum 78:114301CrossRefPubMedGoogle Scholar
  37. Kollmannsberger P, Fabry B (2011) Linear and nonlinear rheology of living cells. Annu Rev Mater Res 41:75–97CrossRefGoogle Scholar
  38. Lange J, Auernheimer V, Strissel PL, Goldmann WH (2013) Influence of focal adhesion kinase on the mechanical behavior of cell populations. Biochem Biophys Res Commun 436:246–251CrossRefPubMedGoogle Scholar
  39. Mehta D, Wang Z, Wu MF, Gunst SJ (1998) Relationship between paxillin and myosin phosphorylation during muscarinic stimulation of smooth muscle. Am J Physiol 274:C741–C747PubMedGoogle Scholar
  40. Merkel R (2001) Force spectroscopy on single passive biomolecules and single biomolecular bonds. Phys Rep 346:343–385CrossRefGoogle Scholar
  41. Metzner C, Raupach C, Paranhos Zitterbart D, Fabry B (2007) Simple model of cytoskeletal fluctuations. Phys Rev E 76:021925CrossRefGoogle Scholar
  42. Metzner C, Raupach C, Mierke CT, Fabry B (2010) Fluctuations of cytoskeleton-bound microbeads – the effect of bead-receptor binding dynamics. J Phys Condens Matter 22:194105CrossRefPubMedGoogle Scholar
  43. Mierke CT, Kollmannsberger P, Paranhos-Zitterbart D, Smith J, Fabry B, Goldmann WH (2008) Mechano-coupling and regulation of contractility by the vinculin tail domain. Biophys J 94:661–670CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mierke CT, Kollmannsberger P, Zitterbart DP, Diez G, Koch TM, Marg S, Ziegler WH, Goldmann WH, Fabry B (2010) Vinculin facilitates cell invasion into three-dimensional collagen matrices. J Biol Chem 285:13121–13130CrossRefPubMedPubMedCentralGoogle Scholar
  45. Möhl C, Kirchgessner N, Schäfer C, Küpper K, Born S, Diez G, Goldmann WH, Merkel R, Hoffmann B (2009) Becoming stable and strong: the interplay between vinculin exchange dynamics and adhesion strength during adhesion site maturation. Cell Motil Cytoskeleton 66:350–364CrossRefPubMedGoogle Scholar
  46. Moy VT, Florin EL, Gaub HE (1994) Intermolecular forces and energies between ligands and receptors. Science 266:257–259CrossRefPubMedGoogle Scholar
  47. Müller O, Gaub HE, Sackmann E (1991) Viscoelastic moduli of sterically and chemically cross-linked actin networks in the dilute to semidilute regime: measurements by an oscillating disk rheometer. Macromolecules 24:3111–3120CrossRefGoogle Scholar
  48. Puig-de-Morales M, Millet E, Fabry B, Navajas D, Wang N, Butler JP, Fredberg JJ (2004) Cytoskeletal mechanics in adherent human airway smooth muscle cells: probe specificity and scaling of protein-protein dynamics. Am J Physiol Cell Physiol 287:C643–C654CrossRefPubMedGoogle Scholar
  49. Ra HJ, Picart C, Feng H, Sweeney HL, Discher DE (1999) Muscle cell peeling from micropatterned collagen: direct probing of focal and molecular properties of matrix adhesion. J Cell Sci 112:1425–1436PubMedGoogle Scholar
  50. Raupach C, Zitterbart DP, Mierke CT, Metzner C, Müller FA, Fabry B (2007) Stress fluctuations and motion of cytoskeletal-bound markers. Phys Rev E Stat Nonlinear Soft Matter Phys 76:011918CrossRefGoogle Scholar
  51. Smith LA, Aranda-Espinoza H, Haun JB, Dembo M, Hammer DA (2007) Neutrophil traction stresses are concentrated in the uropod during migration. Biophys J 92:L58–L60CrossRefPubMedPubMedCentralGoogle Scholar
  52. Stamenovic D, Mijailovich SM, Tolic-Norrelykke IM, Chen J, Wang N (2002) Cell prestress. II. Contribution of microtubules. Am J Physiol Cell Physiol 282:C617–C624CrossRefPubMedGoogle Scholar
  53. Stamenovic D, Suki B, Fabry B, Wang N, Fredberg JJ (2004) Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress. J Appl Physiol 96:1600–1605CrossRefPubMedGoogle Scholar
  54. Thoumine O, Ott A (1997) Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J Cell Sci 110:2109–2116PubMedGoogle Scholar
  55. Valberg PA, Albertini DF (1985) Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J Cell Biol 101:130–140CrossRefPubMedGoogle Scholar
  56. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127CrossRefPubMedGoogle Scholar
  57. Wang N, Tolic-Norrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenovic D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282:C606–C616CrossRefPubMedGoogle Scholar
  58. Zahalak GI, McConnaughey WB, Elson EL (1990) Determination of cellular mechanical properties by cell poking, with an application to leukocytes. J Biomech Eng 112:283–294CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Navid Bonakdar
    • 1
  • Achim Schilling
    • 1
  • Richard Gerum
    • 1
  • José Luis Alonso
    • 2
  • Wolfgang H. Goldmann
    • 1
  1. 1.Department of Physics, Biophysics GroupUniversity of Erlangen-Nuremberg/Friedrich-Alexander-University (FAU)ErlangenGermany
  2. 2.Department of MedicineMass. General Hospital/Harvard Medical SchoolCharlestownUSA

Personalised recommendations