Advertisement

Appearance and Evolution of γ-Hexachlorocyclohexane-Degrading Bacteria

  • Yuji NagataEmail author
  • Michiro Tabata
  • Satoshi Ohhata
  • Masataka Tsuda
Chapter

Abstract

α-Proteobacterial strains belonging to the so-called sphingomonads group degrade various highly recalcitrant compounds, including xenobiotics, but generally each strain degrades only a limited set of compounds, suggesting that sphingomonads tend to be specialists for the degradation of extremely recalcitrant compounds. In this chapter, the appearance and evolution of γ-hexachlorocyclohexane (γ-HCH/γ-BHC/lindane)-degrading bacteria belonging to sphingomonads will be discussed on the basis of the structure and function of their genomes and mobile genetic elements. γ-HCH is a typical, completely man-made chlorinated pesticide that has caused serious environmental problems due to its toxicity and long persistence in upland soils. The genome sequence of an archetypal γ-HCH-degrading strain, Sphingobium japonicum UT26, and its comparison with those of other closely related γ-HCH-degrading and non-γ-HCH-degrading sphingomonad strains revealed that (1) these γ-HCH-degraders appeared independently and in parallel at geographically different areas by recruiting the “specific” lin genes into strains having the core functions of sphingomonads; (2) various sphingomonad-specific plasmids and the insertion sequence IS6100 play important roles in the recruitment and dissemination of the “specific” lin genes; and (3) transposition of IS6100 causes genome rearrangements including deletion and inversion of DNA sequences and fusion and resolution of replicons.

Keywords

Biodegradation Environmental pollutant Genome Mobile genetic element Plasmid • Insertion sequence Sphingomonads Xenobiotics γ-Hexachlorocyclohexane 

Abbreviations

Chr

Chromosome

IS

Insertion sequence

PEG

Polyethylene glycol

POPs

Persistent organic pollutants

TBDR

TonB-dependent receptor

TCA

Tricarboxylic acid

t-HCH

Technical-HCH

γ-HCH

γ-Hexachlorocyclohexane

Notes

Acknowledgments

This work was supported in part by Grant-in-Aids for Scientific Research from Ministry of Education, Culture, Sports, Science, and Technology, and Ministry of Agriculture, Forestry, and Fisheries of Japan.

References

  1. Boltner D, Moreno-Morillas S, Ramos JL (2005) 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol 7:1329–1338PubMedCrossRefGoogle Scholar
  2. Brassinga AK, Marczynski GT (2001) Replication intermediate analysis confirms that chromosomal replication origin initiates from an unusual intergenic region in Caulobacter crescentus. Nucleic Acids Res 29:4441–4451PubMedCrossRefGoogle Scholar
  3. Ceremonie H, Boubakri H, Mavingui P, Simonet P, Vogel TM (2006) Plasmid-encoded γ-hexachlorocyclohexane degradation genes and insertion sequences in Sphingobium francense (ex-Sphingomonas paucimobilis Sp+). FEMS Microbiol Lett 257:243–252PubMedCrossRefGoogle Scholar
  4. Cevallos MA, Cervantes-Rivera R, Gutierrez-Rios RM (2008) The repABC plasmid family. Plasmid 60:19–37PubMedCrossRefGoogle Scholar
  5. Chattoraj DK (2000) Control of plasmid DNA replication by iterons: no longer paradoxical. Mol Microbiol 37:467–476PubMedCrossRefGoogle Scholar
  6. Cheng Q, Yu MC, Reeves AR, Salyers AA (1995) Identification and characterization of a Bacteroides gene, csuF, which encodes an outer membrane protein that is essential for growth on chondroitin sulfate. J Bacteriol 177:3721–3727PubMedGoogle Scholar
  7. Copley SD, Rokicki J, Turner P, Daligault H, Nolan M, Land M (2011) The whole genome sequence of Sphingobium chlorophenolicum L-1: insights into the evolution of the pentachlorophenol degradation pathway. Genome Biol Evol 4:184–198PubMedCrossRefGoogle Scholar
  8. D’Argenio V, Petrillo M, Cantiello P, Naso B, Cozzuto L, Notomista E, Paolella G, Di Donato A, Salvatore F (2011) De novo sequencing and assembly of the whole genome of Novosphingobium sp. strain PP1Y. J Bacteriol 193:4296PubMedCrossRefGoogle Scholar
  9. Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42:73–91PubMedCrossRefGoogle Scholar
  10. de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589PubMedCrossRefGoogle Scholar
  11. Endo R, Kamakura M, Miyauchi K, Fukuda M, Ohtsubo Y, Tsuda M, Nagata Y (2005) Identification and characterization of genes involved in the downstream degradation pathway of γ-hexachlorocyclohexane in Sphingomonas paucimobilis UT26. J Bacteriol 187:847–853PubMedCrossRefGoogle Scholar
  12. Endo R, Ohtsubo Y, Tsuda M, Nagata Y (2007) Identification and characterization of genes encoding a putative ABC-type transporter essential for utilization of γ-hexachlorocyclohexane in Sphingobium japonicum UT26. J Bacteriol 189:3712–3720PubMedCrossRefGoogle Scholar
  13. Ferguson AD, Deisenhofer J (2002) TonB-dependent receptors-structural perspectives. Biochim Biophys Acta 1565:318–332PubMedCrossRefGoogle Scholar
  14. Fuchu G, Ohtsubo Y, Ito M, Miyazaki R, Ono A, Nagata Y, Tsuda M (2008) Insertion sequence-based cassette PCR: cultivation-independent isolation of γ-hexachlorocyclohexane-degrading genes from soil DNA. Appl Microbiol Biotechnol 79:627–632PubMedCrossRefGoogle Scholar
  15. Gil R, Silva FJ, Pereto J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68:518–537PubMedCrossRefGoogle Scholar
  16. Harada KM, Aso Y, Hashimoto W, Mikami B, Murata K (2006) Sequence and analysis of the 46.6-kb plasmid pA1 from Sphingomonas sp. A1 that corresponds to the typical IncP-1β plasmid backbone without any accessory gene. Plasmid 56:11–23PubMedCrossRefGoogle Scholar
  17. Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590PubMedCrossRefGoogle Scholar
  18. Hashimoto W, He J, Wada Y, Nankai H, Mikami B, Murata K (2005) Proteomics-based identification of outer-membrane proteins responsible for import of macromolecules in Sphingomonas sp. A1: alginate-binding flagellin on the cell surface. Biochemistry 44:13783–13794PubMedCrossRefGoogle Scholar
  19. Imai R, Nagata Y, Senoo K, Wada H, Fukuda M, Takagi M, Yano K (1989) Dehydrochlorination of γ-hexachlorocyclohexane (γ-BHC) by γ-BHC-assimilating Pseudomonas paucimobilis. Agric Biol Chem 53:2015–2017CrossRefGoogle Scholar
  20. Imai R, Nagata Y, Fukuda M, Takagi M, Yano K (1991) Molecular cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HCl molecules from γ-hexachlorocyclohexane. J Bacteriol 173:6811–6819PubMedGoogle Scholar
  21. Ito M, Prokop Z, Klvana M, Ohtsubo Y, Tsuda M, Damborsky J, Nagata Y (2007) Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from γ-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205. Arch Microbiol 188:313–325PubMedCrossRefGoogle Scholar
  22. Janssen DB, Dinkla IJ, Poelarends GJ, Terpstra P (2005) Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ Microbiol 7:1868–1882PubMedCrossRefGoogle Scholar
  23. Kahnert A, Mirleau P, Wait R, Kertesz MA (2002) The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in Pseudomonas putida. Environ Microbiol 4:225–237PubMedCrossRefGoogle Scholar
  24. Krasowiak R, Sevastsyanovich Y, Konieczny I, Bingle LE, Thomas CM (2006) IncP-9 replication initiator protein binds to multiple DNA sequences in oriV and recruits host DnaA protein. Plasmid 56:187–201PubMedCrossRefGoogle Scholar
  25. Kumari R, Subudhi S, Suar M, Dhingra G, Raina V, Dogra C, Lal S, van der Meer JR, Holliger C, Lal R (2002) Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 68:6021–6028PubMedCrossRefGoogle Scholar
  26. Lal R, Dogra C, Malhotra S, Sharma P, Pal R (2006) Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends Biotechnol 24:121–130PubMedCrossRefGoogle Scholar
  27. Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HP, Holliger C, Jackson C, Oakeshott JG (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80PubMedCrossRefGoogle Scholar
  28. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere MZ, Ting L, Ertan H, Johnson J, Ferriera S, Lapidus A, Anderson I, Kyrpides N, Munk AC, Detter C, Han CS, Brown MV, Robb FT, Kjelleberg S, Cavicchioli R (2009) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA 106:15527–15533PubMedCrossRefGoogle Scholar
  29. Luo YR, Kang SG, Kim SJ, Kim MR, Li N, Lee JH, Kwon KK (2012) Genome sequence of benzo(a)pyrene-degrading bacterium Novosphingobium pentaromativorans US6-1. J Bacteriol 194:907PubMedCrossRefGoogle Scholar
  30. Lykidis A, Perez-Pantoja D, Ledger T, Mavromatis K, Anderson IJ, Ivanova NN, Hooper SD, Lapidus A, Lucas S, Gonzalez B, Kyrpides NC (2010) The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader. PLoS One 5:e9729PubMedCrossRefGoogle Scholar
  31. Maeda K, Nojiri H, Shintani M, Yoshida T, Habe H, Omori T (2003) Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J Mol Biol 326:21–33PubMedCrossRefGoogle Scholar
  32. Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774PubMedGoogle Scholar
  33. Masai E, Kamimura N, Kasai D, Oguchi A, Ankai A, Fukui S, Takahashi M, Yashiro I, Sasaki H, Harada T, Nakamura S, Katano Y, Narita-Yamada S, Nakazawa H, Hara H, Katayama Y, Fukuda M, Yamazaki S, Fujita N (2012) Complete genome sequence of Sphingobium sp. strain SYK-6, a degrader of lignin-derived biaryls and monoaryls. J Bacteriol 194:534–535PubMedCrossRefGoogle Scholar
  34. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375PubMedCrossRefGoogle Scholar
  35. Miller TR, Delcher AL, Salzberg SL, Saunders E, Detter JC, Halden RU (2010) Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J Bacteriol 192:6101–6102PubMedCrossRefGoogle Scholar
  36. Miyauchi K, Suh SK, Nagata Y, Takagi M (1998) Cloning and sequencing of a 2,5-dichlorohydroquinone reductive dehalogenase gene whose product is involved in degradation of γ-hexachlorocyclohexane by Sphingomonas paucimobilis. J Bacteriol 180:1354–1359PubMedGoogle Scholar
  37. Miyauchi K, Adachi Y, Nagata Y, Takagi M (1999) Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of γ-hexachlorocyclohexane in Sphingomonas paucimobilis. J Bacteriol 181:6712–6719PubMedGoogle Scholar
  38. Miyauchi K, Lee HS, Fukuda M, Takagi M, Nagata Y (2002) Cloning and characterization of linR, involved in regulation of the downstream pathway for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. Appl Environ Microbiol 68:1803–1807PubMedCrossRefGoogle Scholar
  39. Miyazaki R, Sato Y, Ito M, Ohtsubo Y, Nagata Y, Tsuda M (2006) Complete nucleotide sequence of an exogenously isolated plasmid, pLB1, involved in γ-hexachlorocyclohexane degradation. Appl Environ Microbiol 72:6923–6933PubMedCrossRefGoogle Scholar
  40. Nagata Y, Hatta T, Imai R, Kimbara K, Fukuda M, Yano K, Takagi M (1993a) Purification and characterization of γ-hexachlorocyclohexane (γ-HCH) dehydrochlorinase (LinA) from Pseudomonas paucimobilis. Biosci Biotech Biochem 57:1582–1583CrossRefGoogle Scholar
  41. Nagata Y, Nariya T, Ohtomo R, Fukuda M, Yano K, Takagi M (1993b) Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of γ-hexachlorocyclohexane in Pseudomonas paucimobilis. J Bacteriol 175:6403–6410PubMedGoogle Scholar
  42. Nagata Y, Ohtomo R, Miyauchi K, Fukuda M, Yano K, Takagi M (1994) Cloning and sequencing of a 2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase gene involved in the degradation of γ-hexachlorocyclohexane in Pseudomonas paucimobilis. J Bacteriol 176:3117–3125PubMedGoogle Scholar
  43. Nagata Y, Miyauchi K, Damborsky J, Manova K, Ansorgova A, Takagi M (1997) Purification and characterization of a haloalkane dehalogenase of a new substrate class from a γ-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26. Appl Environ Microbiol 63:3707–3710PubMedGoogle Scholar
  44. Nagata Y, Futamura A, Miyauchi K, Takagi M (1999) Two different types of dehalogenases, LinA and LinB, involved in γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26 are localized in the periplasmic space without molecular processing. J Bacteriol 181:5409–5413PubMedGoogle Scholar
  45. Nagata Y, Kamakura M, Endo R, Miyazaki R, Ohtsubo Y, Tsuda M (2006) Distribution of γ-hexachlorocyclohexane-degrading genes on three replicons in Sphingobium japonicum UT26. FEMS Microbiol Lett 256:112–118PubMedCrossRefGoogle Scholar
  46. Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M (2007) Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76:741–752PubMedCrossRefGoogle Scholar
  47. Nagata Y, Ohtsubo Y, Endo R, Ichikawa N, Ankai A, Oguchi A, Fukui S, Fujita N, Tsuda M (2010) Complete genome sequence of the representative γ-hexachlorocyclohexane-degrading bacterium Sphingobium japonicum UT26. J Bacteriol 192:5852–5853PubMedCrossRefGoogle Scholar
  48. Nagata Y, Natsui S, Endo R, Ohtsubo Y, Ichikawa N, Ankai A, Oguchi A, Fukui S, Fujita N, Tsuda M (2011) Genomic organization and genomic structural rearrangements of Sphingobium japonicum UT26, an archetypal γ-hexachlorocyclohexane-degrading bacterium. Enzyme Microb Technol 49:499–508PubMedCrossRefGoogle Scholar
  49. Ochou M, Saito M, Kurusu Y (2008) Characterization of two compatible small plasmids from Sphingobium yanoikuyae. Biosci Biotechnol Biochem 72:1130–1133PubMedCrossRefGoogle Scholar
  50. Reeves AR, D’Elia JN, Frias J, Salyers AA (1996) A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch. J Bacteriol 178:823–830PubMedGoogle Scholar
  51. Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602PubMedGoogle Scholar
  52. Schaper S, Messer W (1995) Interaction of the initiator protein DnaA of Escherichia coli with its DNA target. J Biol Chem 270:17622–17626PubMedCrossRefGoogle Scholar
  53. Senoo K, Wada H (1989) Isolation and identification of an aerobic γ-HCH-decomposing bacterium from soil. Soil Sci Plant Nutr 35:79–87CrossRefGoogle Scholar
  54. Shintani M, Nojiri H (2013) Mobile genetic elements (MGEs) carrying catabolic genes. In: Malik A, Elisabeth Grohmann E, Madalena Alves M (eds) Management of microbial resources in the environment. Springer, Netherlands, pp 167–214Google Scholar
  55. Shintani M, Urata M, Inoue K, Eto K, Habe H, Omori T, Yamane H, Nojiri H (2007) The Sphingomonas plasmid pCAR3 is involved in complete mineralization of carbazole. J Bacteriol 189:2007–2020PubMedCrossRefGoogle Scholar
  56. Sibley CD, MacLellan SR, Finan T (2006) The Sinorhizobium meliloti chromosomal origin of replication. Microbiology 152:443–455PubMedCrossRefGoogle Scholar
  57. Sota M, Yano H, Ono A, Miyazaki R, Ishii H, Genka H, Top EM, Tsuda M (2006) Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase. J Bacteriol 188:4057–4067PubMedCrossRefGoogle Scholar
  58. Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271PubMedCrossRefGoogle Scholar
  59. Stolz A (2009) Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 81:793–811PubMedCrossRefGoogle Scholar
  60. Tabata M, Endo R, Ito M, Ohtsubo Y, Kumar A, Tsuda M, Nagata Y (2011) The lin genes for γ-hexachlorocyclohexane degradation in Sphingomonas sp. MM-1 proved to be dispersed across multiple plasmids. Biosci Biotechnol Biochem 75:466–472PubMedCrossRefGoogle Scholar
  61. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417PubMedGoogle Scholar
  62. Tani A, Charoenpanich J, Mori T, Takeichi M, Kimbara K, Kawai F (2007) Structure and conservation of a polyethylene glycol-degradative operon in sphingomonads. Microbiology 153:338–346PubMedCrossRefGoogle Scholar
  63. Tani A, Tanaka A, Minami T, Kimbara K, Kawai F (2011) Characterization of a cryptic plasmid, pSM103mini, from polyethylene-glycol degrading Sphingopyxis macrogoltabida strain 103. Biosci Biotechnol Biochem 75:295–298PubMedCrossRefGoogle Scholar
  64. Vijgen J, Abhilash PC, Li YF, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian C, Schaffer A, Weber R (2011) Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res Int 18:152–162PubMedCrossRefGoogle Scholar
  65. White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7:301–306PubMedCrossRefGoogle Scholar
  66. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I, Ogura H, Kobayashi K (2002) Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 52:1485–1496PubMedCrossRefGoogle Scholar
  67. Yano H, Miyakoshi M, Ohshima K, Tabata M, Nagata Y, Hattori M, Tsuda M (2010) Complete nucleotide sequence of TOL plasmid pDK1 provides evidence for evolutionary history of IncP-7 catabolic plasmids. J Bacteriol 192:4337–4347PubMedCrossRefGoogle Scholar
  68. Yeon SM, Kim YC (2009) Characterization of plasmid pSY3 in Sphingobium chungbukense DJ77. J Microbiol 47:796–800PubMedCrossRefGoogle Scholar
  69. Yeon SM, Kim YC (2011) Complete sequence and organization of the Sphingobium chungbukense DJ77 pSY2 plasmid. J Microbiol 49:684–688PubMedCrossRefGoogle Scholar
  70. Yuhara S, Komatsu H, Goto H, Ohtsubo Y, Nagata Y, Tsuda M (2008) Pleiotropic roles of iron-responsive transcriptional regulator fur in Burkholderia multivorans. Microbiology 154:1763–1774PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Yuji Nagata
    • 1
    Email author
  • Michiro Tabata
    • 1
  • Satoshi Ohhata
    • 1
  • Masataka Tsuda
    • 1
  1. 1.Graduate School of Life SciencesTohoku UniversitySendaiJapan

Personalised recommendations