Advertisement

Ultra-Fine Grained Steel: Relationship Between Grain Size and Tensile Properties

  • Toshihiro HanamuraEmail author
  • Hai Qiu
Chapter
Part of the NIMS Monographs book series (NIMSM)

Abstract

Characteristic ferrite grain growth occurs in parallel with the Ostwald ripening of cementite particles during annealing of submicron-grained ferrite/cementite steel with a heterogeneous and dense distribution of cementite particles. The applicability of the Hall-Petch relation to the hardness and average ferrite grain size is demonstrated as a predictive means to show a significant potential for hardening by grain refining. The lower yield stress, upper yield stress, and ultimate tensile stress tend to have monotonic relationships with the carbon content. True stress increases with increase in the carbon content. However, the strain-hardening rate increases when the carbon content is increased to 0.3 wt% C, after which the strain-hardening rate remains almost constant even with further increase in the carbon content. This strain-hardening is reflected in a similar change in terms of uniform elongation.

Keywords

Tensile properties Strength Elongation Ultra-grain refinement 

References

  1. 1.
    M. Zhao, T. Hanamura, H. Qui, K. Nagai, K. Yang, Grain growth and Hall-Petch relation in dual-sized ferrite/cementite steel with nano-sized cementite particles in a heterogeneous and dense distribution. Scripta Mater. 54(6), 1193–1197 (2006)CrossRefGoogle Scholar
  2. 2.
    M. Zhao, T. Hanamura, H. Qui, K. Nagai, K. Yang, Dependence of strength and strength-elongation balance on the volume fraction of cementite particles in ultrafine grained ferrite/cementite steels. Scripta Mater. 54(7), 1385–1389 (2006)CrossRefGoogle Scholar
  3. 3.
    R. Song, D. Ponge, R. Kaspar, The microstructure and mechanical properties of ultrafine grainedplain C-Mn steels. Steel Res. Int. 75, 33–37 (2004)Google Scholar
  4. 4.
    K. Nagai, Ultrafine-grained ferrite steel with dispersed cementite particles. J. Mater. Process. Technol. 117(3), 329–332 (2001)CrossRefGoogle Scholar
  5. 5.
    N. Hansen, Hall-Petch relation and boundary strengthening. Scripta Mater. 51(8), 801–806 (2004)CrossRefGoogle Scholar
  6. 6.
    N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Mater. 47(12), 893–899 (2002)CrossRefGoogle Scholar
  7. 7.
    R.Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapelski, B. Baudelet, The Hall-Petch relation in submicro-grained Al-1.5 % Mg alloy. Scr. Metall. Mater. 27(7), 855–860 (1992)CrossRefGoogle Scholar
  8. 8.
    G.W. Nieman, J.R. Weertman, R.W. Siegel, Tensile strength and creep properties of nanocrystalline palladium. Scripta Metall. Mater. 24(1), 145–150 (1990Google Scholar
  9. 9.
    K. Lu, W.D. Wei, J.T. Wang, Microhardness and fracture properties of nanocrystalline Ni, P alloy, Scripta Metall. Mater. 24(12), 2319–2323 (1990)Google Scholar
  10. 10.
    J.S.C. Jang, C.C. Koch, Melting and possible amorphization of Sn and Pb in Ge/Sn and Ge/Pb mechanically milled powders. J. Mater. Res. 5(2), 325–333 (1990)CrossRefGoogle Scholar
  11. 11.
    A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, On the validity of the hall-petch relationship in nanocrystalline materials. Scr. Metall. 23(10), 1679–1683 (1989)CrossRefGoogle Scholar
  12. 12.
    K.M. Vedula, R.W. Heckel, Spheroidization of binary Fe-C alloys over a range of temperatures. Metall. Trans. 1(1), 9–18 (1970)Google Scholar
  13. 13.
    GR Speich, Tempering of low-carbon martensite. Trans TMS-AIME 245, 2553–2564 (1969)Google Scholar
  14. 14.
    G.P. Airey, T.A. Hughes, R.F. Mehl, The growth of cementite particles in ferrite. Trans TMS-AIME 242, 1853–1863 (1968)Google Scholar
  15. 15.
    E. Nes, WB Hutchinson, in Bilde-Sorensen Proc of the 10th Riso Symposium, Riso National Laboratory, Roskilde, Denmark, (1989) p. 233Google Scholar
  16. 16.
    T. Tsuchiyama, H. Uchida, K. Kataoka, S. Takaki, Fabrication of fine-grained high nitrogen austenitic steels through mechanical alloying treatment. ISIJ Int. 42(12), 1438–1443 (2002)CrossRefGoogle Scholar
  17. 17.
    E. Orowan, Internal Stress in Metals and Alloys (Institute of Metals, London, 1948), p. 451Google Scholar
  18. 18.
    E.W. Hart, Theory of the tensile test. Acta Metall. 15(2), 351–355 (1967)CrossRefGoogle Scholar
  19. 19.
    G.E. Dieter, The Plastic Deformation of Metals, Mechanical metallurgical, 3rd edn. (McGraw-Hill, Boston (MA), 1986), p. 290Google Scholar
  20. 20.
    D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, R.Z. Valiev, Deformation behavior and plastic instabilities of ultrafine-grained titanium. Appl. Phys. Lett. 79, 611–613 (2001)CrossRefGoogle Scholar

Copyright information

© National Institute for Materials Science, Japan. Published by Springer Japan 2014

Authors and Affiliations

  1. 1.National Institute for Materials ScienceTsukubaJapan

Personalised recommendations