Emerging Roles of TGF-β Co-receptors in Human Disease

  • Alison E. Meyer
  • Karthikeyan Mythreye
  • Gerard C. Blobe
Chapter

Abstract

TGF-β signaling is both regulated and mediated by signaling co-receptors. Several TGF-β co-receptors have been identified including endoglin (CD105), the type III TGF-β receptor (TβRIII, betaglycan), neuropilin-1/2, syndecan-2, CD109, and LRP1. These co-receptors serve diverse functions including the regulation of ligand access to other TGF-β receptors and receptor trafficking. The TGF-β co-receptors can also signal directly. The TGF-β co-receptors are broadly expressed, have essential roles in embryonic development, and are frequently altered during disease progression. TGF-β co-receptors regulate cancer initiation and progression through effects on cell growth, migration, invasion, proliferation, and angiogenesis. In addition to their roles in cancer, these co-receptors are dysregulated during development, in vascular disease and fibrotic disorders. Collectively, the TGF-β co-receptors influence disease biology through complex mechanisms involving the regulation of growth factor-dependent and independent signaling events as well as through interactions with diverse scaffolding protein partners.

Keywords

Angiogenesis Betaglycan Cancer Co-receptors Development Disease Endoglin Fibrosis Neuropilin Syndecan TGF-β TβRIII 

References

  1. Abdalla SA, Letarte M (2006) Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease. J Med Genet 43(2):97–110. doi: 10.1136/jmg.2005.030833 PubMedGoogle Scholar
  2. Ahn JY, Park S, Yun YS, Song JY (2010) Inhibition of type III TGF-β receptor aggravates lung fibrotic process. Biomed Pharmacother 64(7):472–476. doi: 10.1016/j.biopha.2010.01.006 PubMedGoogle Scholar
  3. Andres JL, Ronnstrand L, Cheifetz S, Massague J (1991) Purification of the transforming growth factor-β (TGF-β) binding proteoglycan betaglycan. J Biol Chem 266(34):23282–23287PubMedGoogle Scholar
  4. Antonescu CR, Zhang L, Nielsen GP, Rosenberg AE, Dal Cin P, Fletcher CD (2011) Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer 50(10):757–764. doi: 10.1002/gcc.20897 PubMedGoogle Scholar
  5. Baba T, Kariya M, Higuchi T, Mandai M, Matsumura N, Kondoh E, Miyanishi M, Fukuhara K, Takakura K, Fujii S (2007) Neuropilin-1 promotes unlimited growth of ovarian cancer by evading contact inhibition. Gynecol Oncol 105(3):703–711PubMedGoogle Scholar
  6. Bae HJ, Eun JW, Noh JH, Kim JK, Jung KH, Xie HJ, Park WS, Lee JY, Nam SW (2009) Down-regulation of transforming growth factor β receptor type III in hepatocellular carcinoma is not directly associated with genetic alterations or loss of heterozygosity. Oncol Rep 22(3): 475–480PubMedGoogle Scholar
  7. Bandyopadhyay A, Lopez-Casillas F, Malik SN (2002a) Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Res 63:4690–4695Google Scholar
  8. Bandyopadhyay A, Wang L, Lopez-Casillas F, Mendoza V, Yeh IT, Sun L (2005) Systemic administration of a soluble betaglycan suppresses tumor growth, angiogenesis, and matrix metalloproteinase-9 expression in a human xenograft model of prostate cancer. Prostate 63(1):81–90PubMedGoogle Scholar
  9. Bandyopadhyay A, Zhu Y, Cibull LB (1999a) A soluble transforming growth factor β type III receptor suppresses tumorigenicity and metastasis of human breast MDA-MB-231 cells. Cancer Res 59:5041–5046PubMedGoogle Scholar
  10. Bandyopadhyay A, Zhu Y, Cibull LB, Chen C, Sun L-Z (1999b) A soluble transforming growth factor β type III receptor suppresses tumorigenicity and metastasis of human breast cancer. Cancer Res 59:5041–5046PubMedGoogle Scholar
  11. Bandyopadhyay A, Zhu Y, Malik SN, Kreisberg J, Brattain MG, Sprague E, Luo J, Lopez-Casillas F, Sun L-Z (2002b) Extracellular domain of TGFβ type III receptor inhibits angiogenesis and tumor growth in human cancer cells. Oncogene 21:3541–3551PubMedGoogle Scholar
  12. Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A, Sotiropoulou PA, Loges S, Lapouge G, Candi A, Mascre G, Drogat B, Dekoninck S, Haigh JJ, Carmeliet P, Blanpain C (2011) A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478(7369):399–403. doi: 10.1038/nature10525 PubMedGoogle Scholar
  13. Benhattar J, Losi L, Chaubert P, Givel JC, Costa J (1993) Prognostic significance of K-ras mutations in colorectal carcinoma. Gastroenterology 104(4):1044–1048PubMedGoogle Scholar
  14. Berge M, Allanic D, Bonnin P, de Montrion C, Richard J, Suc M, Boivin JF, Contreres JO, Lockhart BP, Pocard M, Levy BI, Tucker GC, Tobelem G, Merkulova-Rainon T (2011) Neuropilin-1 is upregulated in hepatocellular carcinoma and contributes to tumour growth and vascular remodeling. J Hepatol 55(4):866–875PubMedGoogle Scholar
  15. Bernabeu C, Lopez-Novoa JM, Quintanilla M (2009) The emerging role of TGF-β superfamily coreceptors in cancer. Biochim Biophys Acta 1792(10):954–973. doi: 10.1016/j.bbadis. 2009.07.003 PubMedGoogle Scholar
  16. Bilandzic M, Chu S, Farnworth PG, Harrison C, Nicholls P, Wang Y, Escalona RM, Fuller PJ, Findlay JK, Stenvers KL (2009) Loss of betaglycan contributes to the malignant properties of human granulosa tumor cells. Mol Endocrinol 23(4):539–548. doi: me.2008-0300 [pii] 10.1210/me.2008-0300 PubMedGoogle Scholar
  17. Blobe GC, Liu X, Fang SJ, How T, Lodish HF (2001) A novel mechanism for regulating transforming growth factor β (TGF-β) signaling. Functional modulation of type III TGF-β receptor expression through interaction with the PDZ domain protein, GIPC. J Biol Chem 276(43): 39608–39617PubMedGoogle Scholar
  18. Bock AJ, Tuft Stavnes H, Kaern J, Berner A, Staff AC, Davidson B (2011) Endoglin (CD105) expression in ovarian serous carcinoma effusions is related to chemotherapy status. Tumour Biol 32(3):589–596PubMedGoogle Scholar
  19. Borges L, Iacovino M, Mayerhofer T, Koyano-Nakagawa N, Baik J, Garry D, Kyba M, Letarte M, Perlingeiro RCR (2012) A critical role for endoglin in the emergence of blood during embryonic development. Blood 119:5417–5428PubMedGoogle Scholar
  20. Bourdeau A, Dumont DJ, Letarte M (1999) A murine model of hereditary hemorrhagic telangiectasia. J Clin Invest 104:1343–1351PubMedGoogle Scholar
  21. Brewer CA, Setterdahl JJ, Li MJ, Johnston JM, Mann JL, McAsey ME (2000) Endoglin expression as a measure of microvessel density in cervical cancer. Obstet Gynecol 96(2):224–228PubMedGoogle Scholar
  22. Burke JP, Watson RW, Murphy M, Docherty NG, Coffey JC, O'Connell PR (2009) Simvastatin impairs smad-3 phosphorylation and modulates transforming growth factor β1-mediated activation of intestinal fibroblasts. Br J Surg 96(5):541–551. doi: 10.1002/bjs.6577 PubMedGoogle Scholar
  23. Cabello-Verrugio C, Brandan E (2007) A novel modulatory mechanism of transforming growth factor-β signaling through decorin and LRP-1. J Biol Chem 282(26):18842–18850. doi: 10.1074/jbc.M700243200 PubMedGoogle Scholar
  24. Cai Y, Wang R, Zhao YF, Jia J, Sun ZJ, Chen XM (2010) Expression of Neuropilin-2 in salivary adenoid cystic carcinoma: its implication in tumor progression and angiogenesis. Pathol Res Pract 206(12):793–799PubMedGoogle Scholar
  25. Cai H, Reed RR (1999) Cloning and characterization of neuropilin-1-interacting protein: a PSD-95/Dlg/ZO-1 domain-containing protein that interacts with the cytoplasmic domain of neuropilin-1. J Neurosci 19(15):6519–6527PubMedGoogle Scholar
  26. Calabro L, Fonsatti E, Bellomo G, Alonci A, Colizzi F, Sigalotti L, Altomonte M, Musolino C, Maio M (2003) Differential levels of soluble endoglin (CD105) in myeloid malignancies. J Cell Physiol 194(2):171–175PubMedGoogle Scholar
  27. Cao S, Yaqoob U, Das A, Shergill U, Jagavelu K, Huebert RC, Routray C, Abdelmoneim S, Vasdev M, Leof E, Charlton M, Watts RJ, Mukhopadhyay D, Shah VH (2010a) Neuropilin-1 promotes cirrhosis of the rodent and human liver by enhancing PDGF/TGF-β signaling in hepatic stellate cells. J Clin Invest 120(7):2379–2394. doi: 10.1172/JCI41203 PubMedGoogle Scholar
  28. Cao Y, Szabolcs A, Dutta SK, Yaqoob U, Jagavelu K, Wang L, Leof EB, Urrutia RA, Shah VH, Mukhopadhyay D (2010b) Neuropilin-1 mediates divergent R-Smad signaling and the myofibroblast phenotype. J Biol Chem 285(41):31840–31848. doi: 10.1074/jbc.M110.151696 PubMedGoogle Scholar
  29. Castonguay R, Werner ED, Matthews RG, Presman E, Mulivor AW, Solban N, Sako D, Pearsall RS, Underwood KW, Seehra J, Kumar R, Grinberg AV (2011) Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem 286(34):30034–30046.  doi:10.1074/jbc.M111.260133 PubMedGoogle Scholar
  30. Cheifetz S, Bellon T, Cales C, Vera S, Bernabeu C, Massague J, Letarte M (1992) Endoglin is a component of the transforming growth factor-β receptor system in human endothelial cells. J Biol Chem 267(27):19027–19030PubMedGoogle Scholar
  31. Chen CZ, Li M, de Graaf D, Monti S, Gottgens B, Sanchez MJ, Lander ES, Golub TR, Green AR, Lodish HF (2002) Identification of endoglin as a functional marker that defines long-term repopulating hematopoietic stem cells. Proc Natl Acad Sci USA 99(24):15468–15473. doi: 10.1073/pnas.202614899 PubMedGoogle Scholar
  32. Chen E, Hermanson S, Ekker SC (2004a) Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood 103(5):1710–1719. doi: 10.1182/blood-2003-06-1783 PubMedGoogle Scholar
  33. Chen L, Klass C, Woods A (2004b) Syndecan-2 regulates transforming growth factor-β signaling. J Biol Chem 279(16):15715–15718. doi: 10.1074/jbc.C300430200 C300430200 [pii] PubMedGoogle Scholar
  34. Chen W, Kirkbride KC, How T, Nelson CD, Mo J, Frederick JP, Wang XF, Lefkowitz RJ, Blobe GC (2003) Beta-arrestin 2 mediates endocytosis of type III TGF-β receptor and down-regulation of its signaling. Science 301(5638):1394–1397PubMedGoogle Scholar
  35. Chittenden TW, Claes F, Lanahan AA, Autiero M, Palac RT, Tkachenko EV, Elfenbein A, Ruiz de Almodovar C, Dedkov E, Tomanek R, Li W, Westmore M, Singh JP, Horowitz A, Mulligan-Kehoe MJ, Moodie KL, Zhuang ZW, Carmeliet P, Simons M (2006) Selective regulation of arterial branching morphogenesis by synectin. Dev Cell 10(6):783–795PubMedGoogle Scholar
  36. Choi Y, Kim H, Chung H, Hwang JS, Shin JA, Han IO, Oh ES (2010) Syndecan-2 regulates cell migration in colon cancer cells through Tiam1-mediated Rac activation. Biochem Biophys Res Commun 391(1):921–925. doi: 10.1016/j.bbrc.2009.11.165 PubMedGoogle Scholar
  37. Cohen T, Gluzman-Poltorak Z, Brodzky A, Meytal V, Sabo E, Misselevich I, Hassoun M, Boss JH, Resnick M, Shneyvas D, Eldar S, Neufeld G (2001) Neuroendocrine cells along the digestive tract express neuropilin-2. Biochem Biophys Res Commun 284(2):395–403PubMedGoogle Scholar
  38. Cohen T, Herzog Y, Brodzky A, Greenson JK, Eldar S, Gluzman-Poltorak Z, Neufeld G, Resnick MB (2002) Neuropilin-2 is a novel marker expressed in pancreatic islet cells and endocrine pancreatic tumours. J Pathol 198(1):77–82PubMedGoogle Scholar
  39. Compton LA, Potash DA, Brown CB, Barnett JV (2007) Coronary vessel development is dependent on the type III transforming growth factor β receptor. Circ Res 101(8):784–791. doi: CIRCRESAHA.107.152082 [pii] 10.1161/CIRCRESAHA.107.152082 PubMedGoogle Scholar
  40. Conley BA, Koleva R, Smith JD, Kacer D, Zhang D, Bernabeu C, Vary CP (2004) Endoglin controls cell migration and composition of focal adhesions: function of the cytosolic domain. J Biol Chem 279(26):27440–27449. doi: 10.1074/jbc.M312561200 PubMedGoogle Scholar
  41. Cooper SJ, Zou H, Legrand SN, Marlow LA, von Roemeling CA, Radisky DC, Wu KJ, Hempel N, Margulis V, Tun HW, Blobe GC, Wood CG, Copland JA (2010) Loss of type III transforming growth factor-β receptor expression is due to methylation silencing of the transcription factor GATA3 in renal cell carcinoma. Oncogene 29(20):2905–2915. doi: onc201064 [pii] 10.1038/onc.2010.64 PubMedGoogle Scholar
  42. Copland JA, Luxon BA, Ajani L, Maity T, Campagnaro E, Guo H, LeGrand SN, Tamboli P, Wood CG (2003) Genomic profiling identifies alterations in TGFβ signaling through loss of TGFβ receptor expression in human renal cell carcinogenesis and progression. Oncogene 22(39):8053–8062. doi: 10.1038/sj.onc.1206835 1206835 [pii] PubMedGoogle Scholar
  43. Coral-Alvarado PX, Garces MF, Caminos JE, Iglesias-Gamarra A, Restrepo JF, Quintana G (2010) Serum endoglin levels in patients suffering from systemic sclerosis and elevated systolic pulmonary arterial pressure. Int J Rheumatol. doi:10.1155/2010/969383Google Scholar
  44. Criswell TL, Arteaga CL (2007) Modulation of NFκB activity and E-cadherin by the type III transforming growth factor β receptor regulates cell growth and motility. J Biol Chem 282(44):32491–32500. doi: 10.1074/jbc.M704434200 PubMedGoogle Scholar
  45. Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ, Ellis LM (2008) Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res 14(7):1931–1937. doi: 10.1158/1078-0432.CCR-07-4478 PubMedGoogle Scholar
  46. Davidson B, Stavnes HT, Forsund M, Berner A, Staff AC (2010) CD105 (endoglin) expression in breast carcinoma effusions is a marker of poor survival. Breast 19(6):493–498PubMedGoogle Scholar
  47. De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200(4): 429–447PubMedGoogle Scholar
  48. Dharmapatni AA, Smith MD, Ahern MJ, Simpson A, Li C, Kumar S, Roberts-Thomson PJ (2001) The TGF β receptor endoglin in systemic sclerosis. Asian Pac J Allergy Immunol 19(4):275–282PubMedGoogle Scholar
  49. Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N, Kelly P, Moeller BJ, Marks JR, Blobe GC (2007) The type III TGF-β receptor suppresses breast cancer progression. J Clin Invest 117(1):206–217PubMedGoogle Scholar
  50. Drenberg CD, Livingston S, Chen R, Kruk PA, Nicosia SV (2009) Expression of Semaphorin 3F and its receptors in epithelial ovarian cancer, fallopian tubes, and secondary mullerian tissues. Obstet Gynecol Int (epub). doi:10.1155/2009/730739Google Scholar
  51. Duwel A, Eleno N, Jerkick M, Arevalo M, Blolanos JP, Bernabeu C, Lopez-Novoa JM (2007) Reduced tumor growth and angiogenesis in endoglin-haploinsufficient mice. Tumour Biol 28(1):1–8PubMedGoogle Scholar
  52. Elliott RL, Blobe GC (2005) Role of transforming growth factor β in human cancer. J Clin Oncol 23(9):2078–2093PubMedGoogle Scholar
  53. Essner JJ, Chen E, Ekker SC (2006) Syndecan-2. Int J Biochem Cell Biol 38(2):152–156. doi: 10.1016/j.biocel.2005.08.012 PubMedGoogle Scholar
  54. Fansatti E, Vecchio LD, Altomonte M, Sigalotti L, Nicotra MR, Coral S, Natali PG, Maio M (2001) Endoglin: an accessory component of the TGF-β-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. J Cell Physiol 188:1–7Google Scholar
  55. Fears CY, Gladson CL, Woods A (2006) Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem 281(21):14533–14536. doi: C600075200 [pii] 10.1074/jbc.C600075200 PubMedGoogle Scholar
  56. Finley DJ, Arora N, Zhu B, Gallagher L, Fahey TJ 3rd (2004) Molecular profiling distinguishes papillary carcinoma from benign thyroid nodules. J Clin Endcrinol Metab 89(7):3214–3223Google Scholar
  57. Finger EC, Turley RS, Dong M, How T, Fields TA, Blobe GC (2008) TβRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity. Carcinogenesis 29(3):528–535. doi: bgm289 [pii] 10.1093/carcin/bgm289 PubMedGoogle Scholar
  58. Finnson KW, Tam BY, Liu K, Marcoux A, Lepage P, Roy S, Bizet AA, Philip A (2006) Identification of CD109 as part of the TGF-β receptor system in human keratinocytes. FASEB J 20(9):1525–1527. doi: 10.1096/fj.05-5229fje PubMedGoogle Scholar
  59. Florio P, Ciarmela P, Reis FM, Toti P, Galleri L, Santopietro R, Tiso E, Tosi P, Petraglia F (2005) Inhibin alpha-subunit and the inhibin coreceptor betaglycan are downregulated in endometrial carcinoma. Eur J Endocrinol 152(2):277–284PubMedGoogle Scholar
  60. Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339(6219):58–61PubMedGoogle Scholar
  61. Fonsatti E, Altomonte M, Nicotra MR, Natali PG, Maio M (2003) Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene 22(42):6557–6563. doi: 10.1038/sj.onc.1206813 PubMedGoogle Scholar
  62. Fonsatti E, Nicolay HJ, Altomonte M, Covre A, Maio M (2010) Targeting cancer vasculature via endoglin/CD105: a novel antibody-based diagnostic and therapeutic strategy in solid tumours. Cardiovasc Res 86(1):12–19. doi: 10.1093/cvr/cvp332 PubMedGoogle Scholar
  63. Gatza CE, Holtzhausen A, Kirkbride KC, Morton A, Gatza ML, Datto MB, Blobe GC (2012) Type III TGF-β receptor enhances colon cancer cell migration and anchorage-independent growth. Neoplasia 13(8):758–770Google Scholar
  64. Gatza CE, Oh SY, Blobe GC (2010) Roles for the type III TGF-β receptor in human cancer. Cell Signal 22(8):1163–1174. doi: S0898-6568(10)00033-1 [pii] 10.1016/j.cellsig.2010.01.016 PubMedGoogle Scholar
  65. Geretti E, Klagsbrun M (2007) Neuropilins: novel targets for anti-angiogenesis therapies. Cell Adh Migr 1(2):56–61PubMedGoogle Scholar
  66. Glinka Y, Prud'homme GJ (2008) Neuropilin-1 is a receptor for transforming growth factor β-1, activates its latent form, and promotes regulatory T cell activity. J Leukoc Biol 84(1):302–310. doi: 10.1189/jlb.0208090 PubMedGoogle Scholar
  67. Gordon KJ, Dong M, Chislock EM, Fields TA, Blobe GC (2008) Loss of type III transforming growth factor β receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression. Carcinogenesis 29(2):252–262. doi: bgm249 [pii] 10.1093/carcin/bgm249 PubMedGoogle Scholar
  68. Gordon KJ, Kirkbride KC, How T, Blobe GC (2009) Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent mechanism that involves matrix metalloproteinase-2. Carcinogenesis 30(2):238–248. doi: 10.1093/carcin/bgn274 PubMedGoogle Scholar
  69. Ghosh S, Sullivan CA, Zerkowski MP, Molinaro AM, Rimm DL, Camp RL, Chung GG (2008) High levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer. Hum Pathol 39(12): 1835–1843PubMedGoogle Scholar
  70. Gougos A, St Jacques S, Greaves A, O'Connell PJ, d'Apice AJ, Burhring HJ, Bernabeu C, van Mourik JA, Letarte M (1992) Identification of distinct epitopes of endoglin, an RGD-containing glycoprotein of endothelial cells, leukemic cells, and syncytiotrophoblasts. Int Immunol 4(1):83–92PubMedGoogle Scholar
  71. Goumans M-J, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J 21(7):1743–1752PubMedGoogle Scholar
  72. Grandclement C, Pallandre JR, Degano SV, Viel E, Bouard A, Balland J, Remy-Martin J-P, Simon B, Rouleau A, Boireau W, Klagsbrun M, Ferrand C, Borg C (2011) Neuropilin-2 expression promotes TGF-β1-mediated epithelial to mesenchymal transition in colorectal cancer cells. PLoS One 6(7):e20444. doi: 10.1371/journal.pone.0020444.t001 PubMedGoogle Scholar
  73. Gray MJ, Van Buren G, Dallas NA, Xia L, Wang X, Yang AD, Somcio RJ, Lin YG, Lim S, Fan F, Mangala LS, Arumugam T, Logsdon CD, Lopez-Berestein G, Sood AK, Ellis LM (2008) Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J Natl Cancer Inst 100(2):109–120PubMedGoogle Scholar
  74. Grotenhuis BA, Wijnhoven BP, van Lanschot JJ (2012) Cancer stem cells and their potential implications for the treatment of solid tumors. J Surg Oncol. doi: 10.1002/jso.23069 PubMedGoogle Scholar
  75. Guerrero-Esteo M, Lastres P, Letamendía A, Pérez-Alvarez MJ, Langa C, López LA, Fabra A, García-Pardo A, Vera S, Letarte M, Bernabéu C (1999) Endoglin overexpression modulates cellular morphology, migration, and adhesion of mouse fibroblasts. Eur J Cell Biol 78(9):614–623. doi: 10.1016/s0171-9335(99)80046-6 PubMedGoogle Scholar
  76. Gulyas M, Hjerpe A (2003) Proteoglycans and WT1 as markers for distinguishing adenocarcinoma, epithelioid mesothelioma, and benign mesothelium. J Pathol 199(4):179–187Google Scholar
  77. Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M, Moudry P, Bartek J Jr, Fischer W, Lukas J, Rich JN, Bartek J (2012) Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 209(3):507–520. doi: 10.1084/jem.20111424 PubMedGoogle Scholar
  78. Handa A, Tokunaga T, Tsuchida T, Lee YH, Kijima H, Yamazaki H, Ueyama Y, Fukuda H, Nakamura M (2000) Neuropilin-2 expression affects the increased vascularization and is a prognostic factor in osteosarcoma. Int J Oncol 17(2):291–296PubMedGoogle Scholar
  79. Hansel DE, Wilentz RE, Yeo CJ, Schulick RD, Montgomery E, Maitra A (2004) Expression of neuropilin-1 in high-grade dysplasia, invasive cancer, and metastases of the human gastrointestinal tract. Am J Surg Pathol 28:347–356PubMedGoogle Scholar
  80. Hawinkels LJ, Ten Dijke P (2011) Exploring anti-TGF-β therapies in cancer and fibrosis. Growth Factors 29(4):140–152. doi: 10.3109/08977194.2011.595411 PubMedGoogle Scholar
  81. Hempel N, How T, Cooper SJ, Green TR, Dong M, Copland JA, Wood CG, Blobe GC (2008) Expression of the type III TGF-β receptor is negatively regulated by TGF-β. Carcinogenesis 29(5):905–912. doi: 10.1093/carcin/bgn049 PubMedGoogle Scholar
  82. Hempel N, How T, Dong M, Murphy SK, Fields TA, Blobe GC (2007) Loss of betaglycan expression in ovarian cancer: role in motility and invasion. Cancer Res 67(11):5231–5238PubMedGoogle Scholar
  83. Henry LA, Johnson DA, Sarrio D, Lee S, Quinlan PR, Crook T, Thompson AM, Reis-Filho JS, Isacke CM (2011) Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome. Oncogene 30(9):1046–1058. doi: 10.1038/onc.2010.488 PubMedGoogle Scholar
  84. Hermida N, Lopez B, Gonzalez A, Dotor J, Lasarte JJ, Sarobe P, Borras-Cuesta F, Diez J (2009) A synthetic peptide from transforming growth factor-β1 type III receptor prevents myocardial fibrosis in spontaneously hypertensive rats. Cardiovasc Res 81(3):601–609. doi: 10.1093/cvr/cvn315 PubMedGoogle Scholar
  85. Holmes AM, Ponticos M, Shi-Wen X, Denton CP, Abraham DJ (2011) Elevated CCN2 expression in scleroderma: a putative role for the TGFβ accessory receptors TGFβRIII and endoglin. J Cell Commun Signal 5(3):173–177. doi: 10.1007/s12079-011-0140-4 PubMedGoogle Scholar
  86. Houthuijzen JM, Daenen LG, Roodhart JM, Voest EE (2012) The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br J Cancer 106(12):1901–1906. doi: 10.1038/bjc.2012.201 PubMedGoogle Scholar
  87. Howe JR, Haidle JL, Lal G, Bair J, Song C, Pechman B, Chinnathambi S, Lynch HT (2007) ENG mutations in MADH4/BMPR1A mutation negative patients with juvenile polyposis. Clin Genet 71(1):91–92. doi: 10.1111/j.1399-0004.2007.00734.x PubMedGoogle Scholar
  88. Hu D, Wang X, Mao Y, Zhou L (2012) Identification of CD105 (endoglin)-positive stem-like cells in rhabdoid meningioma. J Neurooncol 106(3):505–517. doi: 10.1007/s11060-011-0705-3 PubMedGoogle Scholar
  89. Huang X, Xiao D-W, Xu L-Y, Zhong H-J, Liao L-D, Xie Z-F, Li E-M (2009) Prognostic significance of altered expression of SDC2 and CYR61 in esophageal squamous cell carcinoma. Oncol Rep 21(4):1123–1129PubMedGoogle Scholar
  90. Iolascon A, Giordani L, Borriello A, Carbone R, Izzo A, Tonini GP, Gambini C, Della Ragione F (2000) Reduced expression of transforming growth factor-β receptor type III in high stage neuroblastomas. Br J Cancer 82(6):1171–1176PubMedGoogle Scholar
  91. Jelinek DF, R.C. T, Stolovitzky GA (2003) Identification of a global gene expression signature of B-chronic lymphocytic leukemia. Mol Cancer Res 1:346–361PubMedGoogle Scholar
  92. Jia H, Bagherzadeh A, Hartzoulakis B, Jarvis A, Lohr M, Shaikh S, Aqil R, Cheng L, Tickner M, Esposito D, Harris R, Driscoll PC, Selwood DL, Zachary IC (2006) Characterization of a bicyclic peptide neuropilin-1 (NP-1) antagonist (EG3287) reveals importance of vascular endothelial growth factor exon 8 for NP-1 binding and role of NP-1 in KDR signaling. J Biol Chem 281(19):13493–13502. doi: 10.1074/jbc.M512121200 PubMedGoogle Scholar
  93. Jia H, Cheng L, Tickner M, Bagherzadeh A, Selwood D, Zachary I (2010) Neuropilin-1 antagonism in human carcinoma cells inhibits migration and enhances chemosensitivity. Br J Cancer 102(3):541–552. doi: 10.1038/sj.bjc.6605539 PubMedGoogle Scholar
  94. Jones EA, Yuan L, Breant C, Watts RJ, Eichmann A (2008) Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos. Development 135(14):2479–2488. doi: 10.1242/dev.014902 PubMedGoogle Scholar
  95. Kassouf W, Ismail HR, Aprikian AG, Chevalier S (2004) Whole-mount prostate sections reveal differential endoglin expression in stromal, epithelial, and endothelial cells with the development of prostate cancer. Prostate Cancer Prostatic Dis 7(2):105–110PubMedGoogle Scholar
  96. Kawakami T, Tokunaga T, Hatanaka H, Kijima H, Yamazaki H, Abe Y, Osamura Y, Inoue H, Ueyama Y, Nakamura M (2002) Neuropilin 1 and neuropilin 2 co-expression is significantly correlated with increased vascularity and poor prognosis in nonsmall cell lung carcinoma. Cancer 95(10):2196–2201. doi: 10.1002/cncr.10936 PubMedGoogle Scholar
  97. Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, Freedman A, Inghirami G, Cro L, Baldini L, Neri A, Califano A, Dalla-Favera R (2001) Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 194(11):1625–1638PubMedGoogle Scholar
  98. Kopczynska E, Dancewicz M, Kowalewski J, Makarewicz R, Kardymowicz H, Kaczmarczyk A, Tyrakowski T (2012) Influence of surgical resection on plasma endoglin (CD105) level in non-small cell lung cancer patients. Exp Oncol 34(1):53–56PubMedGoogle Scholar
  99. Kramer KL, Barnette JE, Yost HJ (2002) PKCγ regulates syndecan-2 inside-out signaling during xenopus left-right development. Cell 111(7):981–990PubMedGoogle Scholar
  100. Kramer KL, Yost HJ (2002) Ectodermal syndecan-2 mediates left-right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev Cell 2(1):115–124PubMedGoogle Scholar
  101. Kumar S, Ghellal A, Li C, Byrne G, Haboubi N, Wang JM, Bundred N (1999) Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res 59:856–861PubMedGoogle Scholar
  102. Lacal PM, Failla CM, Pagani E, Odorisio T, Schietroma C, Falcinelli S, Zambruno G, D’Atri S (2000) Human melanoma cells secrete and respond to placenta growth factor and vascular endothelial growth factor. J Invest Dermatol 115:1000–1007PubMedGoogle Scholar
  103. Lakshman M, Huang X, Ananthanarayanan V, Jovanovic B, Liu Y, Craft CS, Romero D, Vary CP, Bergan RC (2011) Endoglin suppresses human prostate cancer metastasis. Clin Exp Metastasis 28(1):39–53. doi: 10.1007/s10585-010-9356-6 PubMedGoogle Scholar
  104. Lambert KE, Huang H, Mythreye K, Blobe GC (2011) The type III transforming growth factor-β receptor inhibits proliferation, migration, and adhesion in human myeloma cells. Mol Biol Cell 22(9):1463–1472. doi: 10.1091/mbc.E10-11-0877 PubMedGoogle Scholar
  105. Latil A, Bieche I, Pesche S, Valeri A, Fournier G, Cussenot O, Lidereau R (2000) VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms. Int J Cancer 89:167–171PubMedGoogle Scholar
  106. Lebrin F, Goumans M-J, Jonker L, Carvalho RLC, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, ten Dijke P (2004) Endoglin promotes endothelial cell proliferation and TGF-β/ALK1 signal transduction. EMBO J 23:4018–4028. doi: 10.1038/ PubMedGoogle Scholar
  107. Lee JD, Hempel N, Lee NY, Blobe GC (2010) The type III TGF-β receptor suppresses breast cancer progression through GIPC-mediated inhibition of TGF-β signaling. Carcinogenesis 31(2):175–183. doi: bgp271 [pii] 10.1093/carcin/bgp271 PubMedGoogle Scholar
  108. Lee JH, Park H, Chung H, Choi S, Kim Y, Yoo H, Kim TY, Hann HJ, Seong I, Kim J, Kang KG, Han IO, Oh ES (2009) Syndecan-2 regulates the migratory potential of melanoma cells. J Biol Chem 284(40):27167–27175. doi: 10.1074/jbc.M109.034678 PubMedGoogle Scholar
  109. Lee NY, Blobe GC (2007) The interaction of endoglin with β-arrestin2 regulates transforming growth factor-β-mediated ERK activation and migration in endothelial cells. J Biol Chem 282(29):21507–21517. doi: M700176200 [pii] 10.1074/jbc.M700176200 PubMedGoogle Scholar
  110. Lee NY, Golzio C, Gatza CE, Sharma A, Katsanis N, Blobe GC (2012) Endoglin regulates PI3-kinase/Akt trafficking and signaling to alter endothelial capillary stability during angiogenesis. Mol Biol Cell 23(13):2412–2423PubMedGoogle Scholar
  111. Lee NY, Ray B, How T, Blobe GC (2008) Endoglin promotes transforming growth factor β-mediated Smad 1/5/8 signaling and inhibits endothelial cell migration through its association with GIPC. J Biol Chem 283(47):32527–32533. doi: M803059200 [pii] 10.1074/jbc.M803059200 PubMedGoogle Scholar
  112. Li C, Hampson IN, Hampson L, Kumar P, Bernabeu C, Kumar S (2000) CD105 antagonizes the inhibitory signaling of transforming growth factor β1 on human vascular endothelial cells. FASEB J 14:55–64PubMedGoogle Scholar
  113. Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, Boak BB, Wendel DP (1999) Defective angiogenesis in mice lacking endoglin. Science 284(5419):1534–1537PubMedGoogle Scholar
  114. Li Q, Shirabe K, Kuwada JY (2004) Chemokine signaling regulates sensory cell migration in zebrafish. Dev Biol 269(1):123–136PubMedGoogle Scholar
  115. Liu M, Suga M, Maclean AA, St George JA, Souza DW, Keshavjee S (2002) Soluble transforming growth factor-β type III receptor gene transfection inhibits fibrous airway obliteration in a rat model of Bronchiolitis obliterans. Am J Respir Crit Care Med 165(3):419–423PubMedGoogle Scholar
  116. Lopez-Casillas F, Cheifetz S, Doody J, Andres JL, Lane WS, Massague J (1991) Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-β receptor system. Cell 67(4):785–795PubMedGoogle Scholar
  117. Lopez-Casillas F, Wrana JL, Massague J (1993) Betaglycan presents ligand to the TGF β signaling receptor. Cell 73(7):1435–1444. doi: 0092-8674(93)90368-Z [pii] PubMedGoogle Scholar
  118. Ma X, Labinaz M, Goldstein J, Miller H, Keon WJ, Letarte M, O’Brien E (2000) Endoglin is overexpressed after arterial injury and is required for transforming growth factor-β-induced inhibition of smooth muscle cell migration. Arterioscler Thromb Vasc Biol 20(12):2546–2552. doi: 10.1161/01.atv.20.12.2546 PubMedGoogle Scholar
  119. Mak P, Leav I, Pursell B, Bae D, Yang X, Taglienti CA, Gouvin LM, Sharma VM, Mercurio AM (2010) ERβ impedes prostate cancer EMT by destabilizing HIF-1α and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell 17(4):319–332. doi: 10.1016/j.ccr.2010.02.030 PubMedGoogle Scholar
  120. Margulis V, Maity T, Zhang XY, Cooper SJ, Copland JA, Wood CG (2008) Type III transforming growth factor-β (TGF-β) receptor mediates apoptosis in renal cell carcinoma independent of the canonical TGF-β signaling pathway. Clin Cancer Res 14(18):5722–5730. doi: 14/18/5722 [pii] 10.1158/1078-0432.CCR-08-0546 PubMedGoogle Scholar
  121. Marzioni D, Lorenzi T, Mazzucchelli R, Capparuccia L, Morroni M, Fiorini R, Bracalenti C, Catalano A, David G, Castellucci M, Muzzonigro G, Montironi R (2009) Expression of basic fibroblast growth factor, its receptors and syndecans in bladder cancer. Int J Immunopathol Pharmacol 22(3):627–638PubMedGoogle Scholar
  122. Maring JA, Trojanowska M, ten Dijke P (2012) Role of endoglin in fibrosis and scleroderma. Int Rev Cell Mol Biol 297:295–308PubMedGoogle Scholar
  123. Massague J (1998) TGF-β signal transduction. Annu Rev Biochem 67:753–791PubMedGoogle Scholar
  124. Massague J (2008) TGFβ in cancer. Cell 134:215–230. doi: 10.1016/j.cell.2008.07.001 PubMedGoogle Scholar
  125. Matsuno F, Haruta Y, Kondo M, Tsai IY, Barcos M, Seon BK (1999) Induction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new anti-endoglin monoclonal antibodies. Clin Cancer Res 5:371–382PubMedGoogle Scholar
  126. Maynard SE, Karumanchi SA (2011) Angiogenic factors and preeclampsia. Semin Nephrol 31(1):33–46. doi: 10.1016/j.semnephrol.2010.10.004 PubMedGoogle Scholar
  127. McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbodl EA, Markel DS, McKinnon WC, Murrell J, McCormick MK, Pericak-Vance MA, Heutink P, Oostra BA, Haitjema T, Westerman CJJ, Porteous ME, Guttmacher AE, Letarte M, Marchuk DA (1994) Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351PubMedGoogle Scholar
  128. Meng Q, Lux A, Holloschi A, Li J, Hughes JM, Foerg T, McCarthy JE, Heagerty AM, Kioschis P, Hafner M, Garland JM (2006) Identification of Tctex2β, a novel dynein light chain family member that interacts with different transforming growth factor-β receptors. J Biol Chem 281(48):37069–37080. doi: 10.1074/jbc.M608614200 PubMedGoogle Scholar
  129. Meng W, Xia Q, Wu L, Chen S, He X, Zhang L, Gao Q, Zhou H (2011) Downregulation of TGF-β receptor types II and III in oral squamous cell carcinoma and oral carcinoma-associated fibroblasts. BMC Cancer 11:88. doi: 10.1186/1471-2407-11-88 PubMedGoogle Scholar
  130. Molema G, Griffioen AW (1998) Rocking the foundations of solid tumor growth by attacking the tumor's blood supply. Immunol Today 19(9):392–394PubMedGoogle Scholar
  131. Mythreye K, Blobe GC (2009a) Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell Signal 21:1548–1558. doi: S0898-6568(09)00154-5 [pii] 10.1016/j.cellsig.2009.05.001 PubMedGoogle Scholar
  132. Mythreye K, Blobe GC (2009b) The type III TGF-β receptor regulates epithelial and cancer cell migration through β-arrestin2-mediated activation of Cdc42. Proc Natl Acad Sci USA 106(20):8221–8226. doi: 10.1073/pnas.0812879106 PubMedGoogle Scholar
  133. Mythreye K, Knelson EH, Gatza CE, Gatza ML, Blobe GC (2012) TβRIII/β-arrestin2 regulates integrin α5β1 trafficking, function, and localization in epithelial cells. Oncogene. doi: 10.1038/onc.2012.157 PubMedGoogle Scholar
  134. Narazaki M, Tosato G (2006) Ligand-induced internalization selects use of common receptor neuropilin-1 by VEGF165 and semaphorin3A. Blood 107:3892–3901. doi: 10.1182/blood-2005-10-4113 10.1182/blood-2005-104113 PubMedGoogle Scholar
  135. Neri D, Bicknell R (2005) Tumour vascular targeting. Nat Rev Cancer 5(6):436–446. doi: 10.1038/nrc1627 PubMedGoogle Scholar
  136. Noguer O, Villena J, Lorita J, Vilaro S, Reina M (2009) Syndecan-2 downregulation impairs angiogenesis in human microvascular endothelial cells. Exp Cell Res 315(5):795–808. doi: 10.1016/j.yexcr.2008.11.016 PubMedGoogle Scholar
  137. O'Connor JC, Farach-Carson MC, Schneider CJ, Carson DD (2007) Coculture with prostate cancer cells alters endoglin expression and attenuates transforming growth factor-β signaling in reactive bone marrow stromal cells. Mol Cancer Res 5(6):585–603. doi: 10.1158/1541-7786.MCR-06-0408 PubMedGoogle Scholar
  138. Orosco A, Fromigue O, Bazille C, Entz-Werle N, Levillain P, Marie PJ, Modrowski D (2007) Syndecan-2 affects the basal and chemotherapy-induced apoptosis in osteosarcoma. Cancer Res 67(8):3708–3715. doi: 10.1158/0008-5472.CAN-06-4164 PubMedGoogle Scholar
  139. Pan Q, Chanthery Y, Liang WC, Stawicki S, Mak J, Rathore N, Tong RK, Kowalski J, Yee SF, Pacheco G, Ross S, Cheng Z, Le Couter J, Plowman G, Peale F, Koch AW, Wu Y, Bagri A, Tessier-Lavigne M, Watts RJ (2007) Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11(1):53–67. doi: S1535-6108(06)00367-9 [pii] 10.1016/j.ccr.2006.10.018 PubMedGoogle Scholar
  140. Pardali E, van der Schaft DW, Wiercinska E, Gorter A, Hogendoorn PC, Griffioen AW, ten Dijke P (2011) Critical role of endoglin in tumor cell plasticity of Ewing sarcoma and melanoma. Oncogene 30(3):334–345. doi: 10.1038/onc.2010.418 PubMedGoogle Scholar
  141. Parikh AA, Fan F, Liu WB, Ahmad SA, Stoeltzing O, Reinmuth N, Bielenberg D, Bucana CD, Klagsbrun M, Ellis LM (2004) Neuropilin-1 in human colon cancer: expression, regulation, and role in induction of angiogenesis. Am J Pathol 164(6):2139–2151PubMedGoogle Scholar
  142. Park H, Han I, Kwon HJ, Oh ES (2005) Focal adhesion kinase regulates syndecan-2-mediated tumorigenic activity of HT1080 fibrosarcoma cells. Cancer Res 65(21):9899–9905. doi: 10.1158/0008-5472.CAN-05-1386 PubMedGoogle Scholar
  143. Park H, Kim Y, Lim Y, Han I, Oh ES (2002) Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. J Biol Chem 277(33):29730–29736. doi: 10.1074/jbc.M202435200 PubMedGoogle Scholar
  144. Pimanda JE, Chan WY, Wilson NK, Smith AM, Kinston S, Knezevic K, Janes ME, Landry JR, Kolb-Kokocinski A, Frampton J, Tannahill D, Ottersbach K, Follows GA, Lacaud G, Kouskoff V, Gottgens B (2008) Endoglin expression in blood and endothelium is differentially regulated by modular assembly of the Ets/Gata hemangioblast code. Blood 112(12):4512–4522. doi: 10.1182/blood-2008-05-157560 PubMedGoogle Scholar
  145. Popovic A, Demirovic A, Spajic B, Stimac G, Kruslin B, Tomas D (2010) Expression and prognostic role of syndecan-2 in prostate cancer. Prostate Cancer Prostate Dis 13(1):78–82Google Scholar
  146. Ray BN, Lee NY, How T, Blobe GC (2010) ALK5 phosphorylation of the endoglin cytoplasmic domain regulates Smad1/5/8 signaling and endothelial cell migration. Carcinogenesis 31(3):435–441. doi: bgp327 [pii] 10.1093/carcin/bgp327 PubMedGoogle Scholar
  147. Rodriguez-Barbero A, Obreo J, Alvarez-Munoz P, Pandiella A, Bernabeu C, Lopez-Novoa JM (2006) Endoglin modulation of TGF-β1-induced collagen synthesis is dependent on ERK1/2 MAPK activation. Cell Physiol Biochem 18(1–3):135–142. doi: 10.1159/000095181 PubMedGoogle Scholar
  148. Rokhlin OW, Cohen MB, Kubagawa H, Letarte M, Cooper MD (1995) Differential expression of endoglin on fetal and adult hematopoietic cells in human bone marrow. J Immunol 154(9): 4456–4465PubMedGoogle Scholar
  149. Romero D, O'Neill C, Terzic A, Contois L, Young K, Conley BA, Bergan RC, Brooks PC, Vary CP (2011) Endoglin regulates cancer-stromal cell interactions in prostate tumors. Cancer Res 71(10):3482–3493. doi: 10.1158/0008-5472.CAN-10-2665 PubMedGoogle Scholar
  150. Romero D, Terzic A, Conley BA, Craft CS, Jovanovic B, Bergan RC, Vary CP (2010) Endoglin phosphorylation by ALK2 contributes to the regulation of prostate cancer cell migration. Carcinogenesis 31(3):359–366. doi: 10.1093/carcin/bgp217 PubMedGoogle Scholar
  151. Rosen LS, Gordon MS, Hurwitz HI, Mendelson DS, Kleinzweig D, Adams BJ, C.P. T (2008) Early evidence of toelrability and clinical activity from a phase 1 study of TRC105 (anti-CD105 antibody) in patients with advanced refractory cancer. Eur J Cancer Supplements 6(126)Google Scholar
  152. Rosen LS, Hurwitz HI, Wong MK, Goldman J, Mendelson DS, Fig. WD, Spencer S, Adams BJ, Alvarez D, Seon BK, Theuer CP, Leigh B, Gordon MS (2012) A phase 1 first-in-human study of TRC105 (anti-endoglin antibody) in patients with advanced cancer. Clin Cancer Res 18(17):4820–4829. doi: 10.1158/1078-0432.CCR-12-0098 PubMedGoogle Scholar
  153. Rushing EC, Stine MJ, Hahn SJ, Shea S, Eller MS, Naif A, Khanna S, Westra WH, Jungbluth AA, Busam KJ, Mahalingam M, Alani RM (2012) Neuropilin-2: a novel biomarker for malignant melanoma? Hum Pathol 43(3):381–389PubMedGoogle Scholar
  154. Ryu HY, Lee J, Yang S, Park H, Choi S, Jung KC, Lee ST, Seong JK, Han IO, Oh ES (2009) Syndecan-2 functions as a docking receptor for pro-matrix metalloproteinase-7 in human colon cancer cells. J Biol Chem 284(51):35692–35701. doi: 10.1074/jbc.M109.054254 PubMedGoogle Scholar
  155. Saad RS, Liu YL, Nathan G, Celebrezze J, Medich D, Silverman JF (2004) Endoglin (CD105) and vascular endothelial growth factor as prognostic markers. Mod Pathol 17(2):197–203PubMedGoogle Scholar
  156. Sanchez NS, Hill CR, Love JD, Soslow JH, Craig E, Austin AF, Brown CB, Czirok A, Camenisch TD, Barnett JV (2011) The cytoplasmic domain of TGFβR3 through its interaction with the scaffolding protein, GIPC, directs epicardial cell behavior. Dev Biol 358(2):331–343. doi: 10.1016/j.ydbio.2011.08.008 PubMedGoogle Scholar
  157. Santander C, Brandan E (2006) Betaglycan induces TGF-β signaling in a ligand-independent manner, through activation of the p38 pathway. Cell Signal 18(9):1482–1491. doi: S0898- 6568(05)00327-X [pii] 10.1016/j.cellsig.2005.11.011 PubMedGoogle Scholar
  158. Santibanez JF, Perez-Gomez E, Fernandez LA, Garrido-Martin EM, Carnero A, Malumbres M, Vary CP, Quintanilla M, Bernabeu C (2010) The TGF-β co-receptor endoglin modulates the expression and transforming potential of H-Ras. Carcinogenesis 31(12):2145–2154. doi: 10.1093/carcin/bgq199 PubMedGoogle Scholar
  159. Sanz-Rodriguez F, Guerrero-Esteo M, Botella LM, Banville D, Vary CP, Bernabeu C (2004) Endoglin regulates cytoskeletal organization through binding to ZRP-1, a member of the Lim family of proteins. J Biol Chem 279(31):32858–32868. doi: 10.1074/jbc.M400843200 PubMedGoogle Scholar
  160. Sarraj MA, Chua HK, Umbers A, Loveland KL, Findlay JK, Stenvers KL (2007) Differential expression of TGFBR3 (betaglycan) in mouse ovary and testis during gonadogenesis. Growth Factors 25(5):334–345. doi: 789171518 [pii] 10.1080/08977190701833619 PubMedGoogle Scholar
  161. Sarraj MA, Escalona RM, Umbers A, Chua HK, Small C, Griswold M, Loveland K, Findlay JK, Stenvers KL (2010) Fetal testis dysgenesis and compromised Leydig cell function in Tgfbr3 (β glycan) knockout mice. Biol Reprod 82(1):153–162. doi: biolreprod.109.078766 [pii]10.1095/biolreprod.109.078766 PubMedGoogle Scholar
  162. Schimming R, Marme D (2001) Endoglin (CD105) expression in squamous cell carcinoma of the oral cavity. Head Neck 24(2):151–156Google Scholar
  163. Seon BK, Matsuno F, Haruta Y, Kondo M, Barcos M (1997) Long-lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin. Clin Cancer Res 3:1031–1044PubMedGoogle Scholar
  164. Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F, Zammataro L, Primo L, Tamagnone L, Logan M, Tessier-Lavigne M, Taniguchi M, Puschel AW, Bussolino F (2003) Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 424(6947):391–397. doi: 10.1038/nature01784 nature01784 [pii] PubMedGoogle Scholar
  165. Shariat SF, Karam JA, Walz J, Roehrborn CG, Montorsi F, Margulis V, Saad F, Slawin KM, Karakiewicz PI (2008) Improved prediction of disease relapse after radical prostatectomy through a panel of preoperative blood-based biomarkers. Clin Cancer Res 14(12):3785–3791. doi: 10.1158/1078-0432.CCR-07-4969 PubMedGoogle Scholar
  166. Sharifi N, Hurt EM, Kawasaki BT, Farrar WL (2007) TGFBR3 loss and consequences in prostate cancer. Prostate 67(3):301–311. doi: 10.1002/pros.20526 PubMedGoogle Scholar
  167. Shyu HY, Fong CS, Fu YP, Shieh JC, Yin JH, Chang CY, Wang HW, Cheng CW (2010) Genotype polymorphisms of GGCX, NQO1, and VKORC1 genes associated with risk susceptibility in patients with large-artery atherosclerotic stroke. Clin Chim Acta 411(11–12):840–845. doi: 10.1016/j.cca.2010.02.071 PubMedGoogle Scholar
  168. Soker S, Gollamudi-Payne S, Fidder H, Charmahelli H, Klagsbrun M (1997) Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J Biol Chem 272(50):31582–31588Google Scholar
  169. Sorensen I, Adams RH, Gossler A (2009) DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113(22):5680–5688. doi: 10.1182/blood-2008-08-174508 PubMedGoogle Scholar
  170. Sorensen LK, Brooke BS, Li DY, Urness LD (2003) Loss of distinct arterial and venous boundaries in mice lacking endoglin, a vascular-specific TGFβ coreceptor. Dev Biol 261(1): 235–250PubMedGoogle Scholar
  171. Staton CA, Kumar I, Reed MW, Brown NJ (2007) Neuropilins in physiological and pathological angiogenesis. J Pathol 212(3):237–248. doi: 10.1002/path.2182 PubMedGoogle Scholar
  172. Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, Alvarez RD, Zhang K, Conner M, Landen CN (2012) Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res 18(3):869–881. doi: 10.1158/1078-0432.CCR-11-2188 PubMedGoogle Scholar
  173. Stenvers KL, Tursky ML, Harder KW, Kountouri N, Amatayakul-Chantler S, Grail D, Small C, Weinberg RA, Sizeland AM, Zhu HJ (2003) Heart and liver defects and reduced transforming growth factor β2 sensitivity in transforming growth factor β type III receptor-deficient embryos. Mol Cell Biol 23(12):4371–4385PubMedGoogle Scholar
  174. Stephenson JM, Banerjee S, Saxena NK, Cherian R, Banerjee SK (2002) Neuropilin-1 is differentially expressed in myoepithelial cells and vascular smooth muscle cells in preneoplastic and neoplastic human breast: a possible marker for the progression of breast cancer. Int J Cancer 101(5):409–414. doi: 10.1002/ijc.10611 PubMedGoogle Scholar
  175. Sun L, Chen C (1997) Expression of transforming growth factor β type III receptor suppresses tumorigenicity of human breast cancer MDA-MB-231 cells. J Biol Chem 272(40): 25367–25372PubMedGoogle Scholar
  176. Sweet K, Willis J, Zhou X, Gallione C, Sawada T, Alhopuro P, Khoo S, Patocs A, Martin C, Bridgeman S, Heinz J, Pilarski R, Lehtonen R, Prior T, Rebourg T, Teh B, Marchuk D, Aaltonen L, Eng C (2005) Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis. JAMA 294(19):2465–2473PubMedGoogle Scholar
  177. Tabata M, Kondo M, Haruta Y, Seon BK (1999) Antiangiogenic radioimmunotherapy of human solid tumors in SCID mice using 125I-labeled anti-endoglin monoclonal antibodies. Int J Cancer 82:737–742PubMedGoogle Scholar
  178. Takahashi N, Haba A, Matsuno F, Seon BK (2001) Antiangiogenic therapy of established tumors in human skin/severe combined immunodeficiency mouse chimerias by anti-endoglin (CD105) monoclonal antibodies, and synergy between anti-endoglin antibody and cyclophosphamide. Cancer Res 61:7846–7854PubMedGoogle Scholar
  179. Tanaka F, Otake Y, Yanagihara K, Kawano Y, Miyahara R, Li M, Yamada T, Hanaoka N, Inui K, Wada H (2001) Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD35 antibody and anti-CD105 antibody. Clin Cancer Res 7:3410–3415PubMedGoogle Scholar
  180. Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK (2010) Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 277(19):3904–3923. doi: 10.1111/j.1742-4658.2010.07800.x PubMedGoogle Scholar
  181. Tsujie M, Tsujie T, Toi H, Uneda S, Shiozaki K, Tsai H, Seon BK (2008) Anti-tumor activity of an anti-endoglin monoclonal antibody is enhanced in immunocompetent mice. Int J Cancer 122(10):2266–2273. doi: 10.1002/ijc.23314 PubMedGoogle Scholar
  182. Turley RS, Finger EC, Hempel N, How T, Fields TA, Blobe GC (2007) The type III transforming growth factor-β receptor as a novel tumor suppressor gene in prostate cancer. Cancer Res 67(3):1090–1098. doi: 10.1158/0008-5472.CAN-06-3117 PubMedGoogle Scholar
  183. Uneda S, Toi H, Tsujie T, Tsujie M, Harada N, Tsai H, Seon BK (2009) Anti-endoglin monoclonal antibodies are effective for suppressing metastasis and the primary tumors by targeting tumor vasculature. Int J Cancer 125(6):1446–1453. doi: 10.1002/ijc.24482 PubMedGoogle Scholar
  184. Valdembri D, Caswell PT, Anderson KI, Schwarz JP, Konig I, Astanina E, Caccavari F, Norman JC, Humphries MJ, Bussolino F, Serini G (2009) Neuropilin-1/GIPC1 signaling regulates α5β1 integrin traffic and function in endothelial cells. PLoS Biol 7(1):e25. doi: 08-PLBI-RA-0162 [pii] 10.1371/journal.pbio.1000025 PubMedGoogle Scholar
  185. von Wronski MA, Raju N, Pillai R, Bogdan NJ, Marinelli ER, Nanjappan P, Ramalingam K, Arunachalam T, Eaton S, Linder KE, Yan F, Pochon S, Tweedle MF, Nunn AD (2006) Tuftsin binds neuropilin-1 through a sequence similar to that encoded by exon 8 of vascular endothelial growth factor. J Biol Chem 281(9):5702–5710. doi: 10.1074/jbc.M511941200 Google Scholar
  186. Wang L, Mukhopadhyay D, Xu X (2006) C terminus of RGS-GAIP-interacting protein conveys neuropilin-1-mediated signaling during angiogenesis. FASEB J 20(9):1513–1515. doi: fj.05-5504fje [pii] 10.1096/fj.05-5504fje PubMedGoogle Scholar
  187. Wang XF, Lin HY, Ng-Eaton E, Downward J, Lodish HF, Weinberg RA (1991) Expression cloning and characterization of the TGF-β type III receptor. Cell 67(4):797–805. doi: 0092-8674(91)90074-9 [pii] PubMedGoogle Scholar
  188. Webber J, Steadman R, Mason MD, Tabi Z, Clayton A (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70(23):9621–9630. doi: 10.1158/0008-5472.CAN-10-1722 PubMedGoogle Scholar
  189. Wikstrom P, Lissbrant IF, Stattin P, Egevad L, Bergh A (2002) Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate 51(4):268–275. doi: 10.1002/pros.10083 PubMedGoogle Scholar
  190. Wild JR, Staton CA, Chapple K, Corfe BM (2012) Neuropilins: expression and roles in the epithelium. Int J Exp Pathol 93(2):81–103. doi: 10.1111/j.1365-2613.2012.00810.x PubMedGoogle Scholar
  191. Wipff J, Avouac J, Borderie D, Zerkak D, Lemarechal H, Kahan A, Boileau C, Allanore Y (2008) Disturbed angiogenesis in systemic sclerosis: high levels of soluble endoglin. Rheumatology (Oxford) 47(7):972–975. doi: 10.1093/rheumatology/ken100 Google Scholar
  192. Wong VC, Chan PL, Bernabeu C, Law S, Wang LD, Li JL, Tsao SW, Srivastava G, Lung ML (2008) Identification of an invasion and tumor-suppressing gene, Endoglin (ENG), silenced by both epigenetic inactivation and allelic loss in esophageal squamous cell carcinoma. Int J Cancer 123(12):2816–2823. doi: 10.1002/ijc.23882 PubMedGoogle Scholar
  193. Woszczyk D, Gola J, Jurzak M, Mazurek U, Mykala-Ciesla J, Wilczok T (2004) Expression of TGF β1 genes and their receptor types I, II, and III in low- and high-grade malignancy non-Hodgkin's lyphomas. Med Sci Monit 10(1):CR33–CR37PubMedGoogle Scholar
  194. Yacoub M, Coulon A, Celhay O, Irani J, Cussenot O, Fromont G (2009) Differential expression of the semaphorin 3A pathway in prostatic cancer. Histopathology 55(4):392–398PubMedGoogle Scholar
  195. Yasuoka H, Kodama R, Tsujimoto M, Yoshidome K, Akamatsu H, Nakahara M, Inagaki M, Sanke T, Nakamura Y (2009) Neuropilin-2 expression in breast cancer: correlation with lymph node metastasis, poor prognosis, and regulation of CXCR4 expression. BMC Cancer 9:220PubMedGoogle Scholar
  196. You HJ, How T, Blobe GC (2009) The type III transforming growth factor-β receptor negatively regulates nuclear factor κ B signaling through its interaction with β-arrestin2. Carcinogenesis 30(8):1281–1287. doi: bgp071 [pii] 10.1093/carcin/bgp071 PubMedGoogle Scholar
  197. Younan S, Elhoseiny S, Hammam A, Gawdat R, El-Wakil M, Fawzy M (2012) Role of neuropilin-1 and its expression in Egyptian acute myeloid and acute lymphoid leukemia patients. Leuk Res 36(2):169–173PubMedGoogle Scholar

Copyright information

© Springer 2013

Authors and Affiliations

  • Alison E. Meyer
    • 1
  • Karthikeyan Mythreye
    • 1
  • Gerard C. Blobe
    • 1
  1. 1.Division of Medical Oncology, Departments of Medicine, Pharmacology and Cancer BiologyDuke University Medical CenterDurhamUSA

Personalised recommendations