Advertisement

Methods for Estimating Individual Growth of Foraminifera Based on Chamber Volumes

  • Johann HoheneggerEmail author
  • Antonino Briguglio
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Based on chamber volumes, different methods for evaluating growth of individual foraminifera are shown using the generalized logistic growth function or the Gompertz function. Residuals to the theoretical functions were calculated to differentiate between instantaneous or oscillatory deviations. The chamber-building rate must be calculated allowing inferences of time-dependent influences by environmental factors.

Keywords

Chamber-building rate Cross correlation Growth functions Oscillation Residuals 

References and Programs1

General Textbooks

  1. Batschelet E (1971) Introduction to mathematics for life scientists. Springer, BerlinCrossRefGoogle Scholar
  2. Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New YorkGoogle Scholar
  3. Hammer Ø, Harper DAT (2006) Paleontological data analysis. Blackwell, MaldenGoogle Scholar
  4. Zar JH (2010) Biostatistical analysis, 5th edn. Pearson, Upper Saddle RiverGoogle Scholar

Programs

  1. Microsoft Office Excel (2010)Google Scholar
  2. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontolo Electronica 4(1):9 http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  3. PASW Statistics 19 (2010) Version 19.0.0, IBMGoogle Scholar
  4. R version 2.15.2 (2012). The R Foundation for Statistical ComputingGoogle Scholar

References

  1. David HA (1970) Order statistics. Wiley, New YorkGoogle Scholar
  2. Hohenegger J (1996) Remarks on the distribution of larger Foraminifera (Protozoa) from Belau (Western Carolines). Kagoshima Univ Res Center South Pacific, Occ papers, vol. 30:85–90Google Scholar
  3. Krüger R (1994) Untersuchungen zum Entwicklungsgang rezenter Nummulitiden: Heterostegina depressa, Nummulites venosus und Cycloclypeus carpenteri. Dissertation, Christian Albrechts Universität KielGoogle Scholar
  4. Labaj P, Topa P, Tyszka J, Alda W (2003) 2D and 3D numerical models of the growth of foraminiferal shells. In: Sloot PMA (ed) ICCS 2003, LNCS 2657. Springer, Berlin, pp 669–678Google Scholar
  5. Lietz R (1996) Untersuchungen zur Individualentwicklung der Großforaminifere Cycloclypeus carpenteri Carpenter (1856). Dissertation, Christian Albrechts Universität KielGoogle Scholar
  6. Olsson RK (1973) What is a kummerform planktonic foraminifer? J Paleontol 47:327–329Google Scholar
  7. Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300CrossRefGoogle Scholar
  8. Röttger R (1972) Analyse von Wachstumskurven von Heterostegina depressa (Foraminifera: Nummulitidae). Mar Biol 17:228–242CrossRefGoogle Scholar
  9. Röttger R, Spindler M (1976) Development of Heterostegina depressa individuals (Foraminifera, Nummulitidae) in laboratory cultures. Marit Sediments Spec Publ. 1: 81–87Google Scholar
  10. Schulz M, Mudelsee M (2002) REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Compt Rendus Geosci 28:421–426Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of PalaeontologyUniversity of ViennaViennaAustria
  2. 2.Natural History Museum ViennaViennaAustria

Personalised recommendations