The Propagule Method as an Experimental Tool in Foraminiferal Ecology

  • Elisabeth AlveEmail author
  • Susan T. Goldstein
Part of the Environmental Science and Engineering book series (ESE)


The Propagule Method provides a novel and logistically simple experimental tool for examining the ecology of benthic foraminifera, including their dispersal and the responses of both individual species and multi-species assemblages to one or more specific environmental conditions. Propagules, small juveniles, form a “bank” in fine-grained marine sediments following dispersal and settlement. As shown previously, propagules may be derived from local or distant populations, and those of some species may persist in a dormant or cryptic state for months or even years. In general, the Propagule Method first involves separating the propagule bank from mature foraminifera and various larger organisms, which is easily done by sieving. The fine sediment fraction contains the propagule bank and is retained for experimental treatments and associated controls. At the conclusion of the experiment, mature assemblages are harvested following growth and in some cases reproduction. By focusing on the responses of juveniles (propagules) as they grow to adults, this approach is consistent with studies that use invertebrate larvae in that it uses juveniles to assess responses to environmental conditions. The method has the potential to work for a wide range of benthic foraminifera, irrespective of test composition.


Exotic species Experimental ecology Microcosms Propagule bank 



We thank John W. Murray and Christopher J. Duffield for useful comments on the manuscript. This work was supported by National Science Foundation grant OCE 0850505 to STG.


  1. Alve E (1999) Colonization of new habitats by benthic foraminifera: a review. Earth Sci Rev 46:167–185Google Scholar
  2. Alve E, Bernhard JM (1995) Vertical migratory response of benthic foraminifera to controlled oxygen concentrations in an experimental mesocosm. Mar Ecol Prog Ser 116:137–151CrossRefGoogle Scholar
  3. Alve E, Goldstein ST (2002) Resting stage in benthic foraminiferal propagules: a key feature for dispersal? Evidence from two shallow-water species. J Micropalaeontol 21:95–96CrossRefGoogle Scholar
  4. Alve E, Goldstein ST (2003) Propagule transport as a key method of dispersal in benthic foraminifera. Limnol Oceanogr 48:2163–2170CrossRefGoogle Scholar
  5. Alve E, Goldstein ST (2010) Dispersal, survival and delayed growth of benthic foraminiferal propagules. J Sea Res 63:36–51CrossRefGoogle Scholar
  6. Bernhard JM (2000) Distinguishing live from dead foraminifera: methods review and proper applications. Micropaleontology 46:38–46Google Scholar
  7. Bernhard JM, Blanks JK, Hintz CJ, Chandler GT (2004) Use of the fluorescent marker calcein to label foraminiferal tests. J Foraminiferal Res 34:96–101CrossRefGoogle Scholar
  8. Chandler GT, Williams DF, Spero HJ, Ziaodong G (1996) Sediment microhabitat effects on carbon stable isotopic signatures of microcosm-cultured benthic foraminifera. Limnol Oceanogr 41:680–688CrossRefGoogle Scholar
  9. de Nooijer LJ, Reichart GJ, Dueñas-Bohórquez A, Wolthers M, Ernst SR, Mason PRD, van der Zwaan B (2007) Copper incorporatioin in foraminiferal calcite: results from culturing experiments. Biogeosciences 4:493–504CrossRefGoogle Scholar
  10. Dissard D, Nehrke G, Reichart G-J, Bijma J (2010) The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic foraminifera Ammonia tepida: results from culture experiments. Geochim Cosmochim Acta 74:928–940CrossRefGoogle Scholar
  11. Duguay LE (1983) Comparative laboratory and field studies on calcification and carbon fixation in foraminiferal–algal associations. J Foraminiferal Res 13:252–261CrossRefGoogle Scholar
  12. Ernst S, van der Zwaan B (2004) Effects of experimentally induced raised levels of organic flux and oxygen depletion on a continental slope benthic foraminiferal community. Deep-Sea Res 51:1709–1739Google Scholar
  13. Ernst S, Morvan J, Geslin E, Le Bihan A, Jorissen FJ (2006) Benthic foraminiferal response to experimentally induced Erika oil pollution. Mar Micropaleontol 61:76–93CrossRefGoogle Scholar
  14. Filipsson HL, Bernhard JM, Lincoln SA, McCorkle DC (2010) A culture-based calibration of benthic foraminiferal paleotemperature proxies: δ18O and Mg/Ca results. Biogeosciences 7:1335–1347CrossRefGoogle Scholar
  15. Goldstein ST (1997) Gametogenesis and the antiquity of reproductive pattern in the Foraminiferida. J Foraminiferal Res 27:319–328CrossRefGoogle Scholar
  16. Goldstein ST (1999) Foraminifera: a biological overview. In: Sen Gupta BK (ed) Modern foraminifera. Kluwer, Dordrecht, pp 37–55Google Scholar
  17. Goldstein ST, Alve E (2011) Experimental assembly of foraminiferal communities from coastal propagule banks. Mar Ecol Prog Ser 437:1–11CrossRefGoogle Scholar
  18. Grell KG (1956) Der Kerndualismus der Foraminifere Glabratella sulcata. Zeitschrift für Naturforschung 11b:366–368Google Scholar
  19. Gustafsson M, Dahllof I, Blanck H, Hall P, Molander S, Nordberg K (2000) Benthic foraminiferal tolerance to tri-n-butyltin (TBT) pollution in an experimental mesocosm. Mar Pollut Bull 40:1072–1075CrossRefGoogle Scholar
  20. Hallock P (1981) Light dependence in Amphistegina. J Foraminiferal Res 11:40–46CrossRefGoogle Scholar
  21. Hemleben C, Kitazato H (1995) Deep-sea foraminifera under long time observation in the laboratory. Deep-Sea Res I 42:827–832CrossRefGoogle Scholar
  22. Hintz CJ, Chandler GT, Bernhard JM, McCorkle DC, Havach SM, Blanks JK, Shaw TJ (2004) A physicochemically-constrained seawater culturing system for production of benthic foraminifera. Limnol Oceanogr Methods 2:160–170CrossRefGoogle Scholar
  23. Hintz CJ, Shaw TJ, Chandler GT, Bernhard JM, McCorkle DC, Blanks JK (2006a) Trace/minor element:calcium ratios in cultured benthic foraminifera. Part I: inter-species and inter-individual variability. Geochim Cosmochim Acta 70:1952–1963CrossRefGoogle Scholar
  24. Hintz CJ, Shaw TJ, Chandler GT, Bernhard JM, McCorkle DC, Blanks JK (2006b) Trace/minor element:calcium ratios in cultured benthic foraminifera. Part II: ontogenetic variation. Geochim Cosmochim Acta 70:1964–1976CrossRefGoogle Scholar
  25. Hofker J (1951) The foraminifera of the Siboga Expedition, Part III. In: Brill EJ (ed), Ordo Dentata, sub-Ordines Protoforaminata, Biforaminata, Deuteroforaminata, Leiden, 513 pGoogle Scholar
  26. Höglund H (1947) Foraminifera in the Gullmar Fjord and the Skagerak. Zoologiska bidrag från Uppsala 26:1–328Google Scholar
  27. Kitazato H (1988) Locomotion of some benthic foraminifera in and on sediments. J Foraminiferal Res 18:344–349CrossRefGoogle Scholar
  28. Lister JJ (1895) Contributions to the life-history of the foraminifera. Philos Trans R Soc Lond Ser B 186:401–453CrossRefGoogle Scholar
  29. Lopez E (1979) Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability, and persistence. Mar Biol 53:201–211CrossRefGoogle Scholar
  30. Mojtahid M, Zubkov MV, Hartmann M, Gooday AJ (2011) Grazing of intertidal benthic foraminifera on bacteria: assessment using pulse-chase radiotracing. J Exp Mar Biol Ecol 399:25–34CrossRefGoogle Scholar
  31. Murray JW (1991) Ecology and paleoecology of benthic foraminifera. Longman Scientific and Technical & Wiley, Harlow, 397 pGoogle Scholar
  32. Murray JW (2000) The enigma of the continued use of total assemblages in ecological studies of benthic foraminifera. J Foraminiferal Res 30:244–245; 2002, ibid., 32: 200; (erratum)Google Scholar
  33. Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge, 426 pGoogle Scholar
  34. Murray JW (2013) Living benthic foraminifera: biogeographical distributions and the significance of rare morphospecies. J Micropalaeontol 32:1–58CrossRefGoogle Scholar
  35. Murray JW, Alve E (2000) Major aspects of foraminiferal variability (standing crop and biomass) on a monthly scale in an intertidal zone. J Foraminiferal Res 3:177–191CrossRefGoogle Scholar
  36. Myers EH (1935) The life history of Patellina corrugata Williamson, a foraminifer. Bull Scripps Inst Oceanogr Tech Ser 3:355–392Google Scholar
  37. Myers EH (1936) The life cycle of Spirillina vivipara Ehrenberg, with notes on morphogenesis, systematics and the distribution of foraminifera. J R Microsc Soc 56:120–146CrossRefGoogle Scholar
  38. Nomaki H, Heinz P, Hemleben C, Kitazato H (2005) Behavior and response of deep-sea benthic foraminifera to freshly supplied organic matter: a laboratory feeding experiment in microcosm environments. J Foraminiferal Res 35:103–113CrossRefGoogle Scholar
  39. Olsgard F (1999) Effects of copper contamination on re-colonisation of subtidal marine soft sediments—an experimental field study. Mar Pollut Bull 38:448–462CrossRefGoogle Scholar
  40. Pawlowski J, Lee JJ (1992) The life-cycle of Rotaliella elatiana n.sp.: a tiny macroalgavorous foraminifer from the Gulf of Elat. J Protozool 39:131–143CrossRefGoogle Scholar
  41. Pineda MC, McQuaid CD, Turon X, López-Legentil S, Ordóñez V, Rius M (2012) Tough adults, frail babies: an analysis of stress sensitivity across early life-history stages of widely introduced marine invertebrates. PLoS ONE 7:e46672. doi: 10.1371/journal.pone.0046672 CrossRefGoogle Scholar
  42. Röttger R (1976) Ecological observations on Heterostegina depressa (Foraminifera, Nummulitidae) in the laboratory and in its natural habitat. Mar Sed Spec Publ 1:75–80Google Scholar
  43. Sen Gupta BK, Smith LE (2013) Foraminifera of petroleum platforms, Louisiana shelf, Gulf of Mexico. Mar Micropaleontol. doi: 10.1016/j.marmicro.2013.01.001 Google Scholar
  44. Topping JN, Murray JW, Pond DW (2006) Sewage effects on the food sources and diet of benthic foraminifera living in oxic sediment: a microcosm experiment. J Exp Mar Biol Ecol 329:239–250CrossRefGoogle Scholar
  45. Toyofuku T, Kitazato H (2005) Micromapping of Mg/Ca values in cultured specimens of the high-magnesium benthic foraminifera. Geochem Geophys Geosyst 6 (Q11P05). doi: 10.1029/2005GC00961
  46. Wilson-Finelli A, Chandler GT, Spero HJ (1998) Stable isotope behavior in paleoceanographically important benthic foraminifera: results from microcosm culture experiments. J Foraminiferal Res 28:312–320Google Scholar
  47. Young CM (1995) Behavior and locomotion during the dispersal phase of larval life. In: McEdward L (ed) Ecology of marine invertebrate larvae. CRC, Boca Raton, pp 249–278Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of OsloOsloNorway
  2. 2.Department of GeologyUniversity of GeorgiaAthensUSA

Personalised recommendations