Advertisement

Supplementary Material

  • Alexander NickolaenkoEmail author
  • Masashi Hayakawa
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

This chapter contains material used in the previous chapters; explanations and the program listing. We describe the formalism connecting the vertical profiles of atmosphere conductivity with ELF propagation constant. Formulas are given for the frequency domain and time domain solutions of pulsed radio propagation in the Earth–ionosphere cavity. These equations were used when obtaining the model results used throughout the book, and these are exploited in the relevant FORTRAM listings in this chapter. Spectra and waveforms are shown. We discuss the impact of frequency characteristics of typical SR receiver on the spectra and the waveforms of ELF transients. Compensating the phase distortions is addressed. Separate sections present formulas of spherical trigonometry and we demonstrate the essentials of singular spectral analysis (SSA) (‘Caterpillar’ algorithm). The listings are given for the field computations in the time and frequency domains.

Keywords

Propagation constant Vertical profiles of atmosphere conductivity Model Q–burst spectra Waveforms of ELF transients Impact of SR receiver Time domain solution Formulas of spherical trigonometry Caterpillar procedure Listing of typical routines for field computations 

Supplementary material

Supplementary material 1 (AVI 3091 kb)

Supplementary material 2 (AVI 661 kb)

References

  1. Baba K, Hayakawa M (1995) The effect of localized ionospheric perturbations on subionospheric VLF propagation on the basis of finite element method. Radio Sci 30:1511–1517CrossRefGoogle Scholar
  2. Bateman H, Erdelyi A (1953) Higher transcendental functions, vol 1. McGraw-Hill Co., New York 296 ppGoogle Scholar
  3. Belyaev GG, Schekotov AYu, Shvets AV, Nickolaenko AP (1999) Schumann resonances observed using poynting vector spectra. J Atmos Solar-Terr Phys 61:751–763CrossRefGoogle Scholar
  4. Berenger JP (2002) FDTD computation of VLF-LF propagation in the Earth-ionosphere waveguide. Ann Telecommun 5(11–12):1059–1070Google Scholar
  5. Bliokh PV, Galyuk YuP, Hynninen EM, Nickolaenko AP, Rabinowicz LM (1977) On the resonance phenomena in the Earth-ionosphere cavity. Izvestiya Vuzov, Radiofizika 20:501–509 (in Russian)Google Scholar
  6. Bliokh PV, Nickolaenko AP, Filippov YuF (1980) In: Jones DLl (ed) Schumann resonances in the Earth-ionosphere cavity. Peter Peregrinus, OxfordGoogle Scholar
  7. Cummer SA (2000) Modeling electromagnetic propagation in the Earth-ionosphere waveguide. IEEE Trans Antennas Propag 48(9):1420–1429CrossRefGoogle Scholar
  8. Danilov DL (1996) Principal components in time series forecast. Proc Stat Comput Sect Am Stat Assoc, pp 56–160Google Scholar
  9. Danilov DL, Zhiglyavsky AA (eds) (1997) Principal component of the time series: the Caterpillar method. St-Petersburg State University, St.-Petersburg, Russia, 307 pp (in Russian)Google Scholar
  10. Erdelyi A, Magnus W, Oberhettinger F, Tricomi FG (1953) Higher transcendental functions, vol 1. McGraw-Hill, New YorkGoogle Scholar
  11. Füllekrug M (2000) Dispersion relation for spherical electromagnetic resonances in the atmosphere. Phys Lett A 275:80–89Google Scholar
  12. Füllekrug M (2005) Detection of thirteen resonances of radio waves from particularly intense lightning discharges. Geophys Res Lett 32:L13809. doi: 10.1029/2005GL023028 CrossRefGoogle Scholar
  13. Galejs J (1961) Terrestrial extremely low frequency noise spectrum in the presence of exponential ionospheric conductivity profiles. J Geophys Res 66:2789–2793CrossRefGoogle Scholar
  14. Galejs J (1970) Frequency variations of Schumann resonances. J Geophys Res 75:3237–3251CrossRefGoogle Scholar
  15. Galejs J (1972) Terrestrial propagation of long electromagnetic waves. Pergamon Press, New YorkGoogle Scholar
  16. Golyandina N, Nerkutkin V, Zhiglyavsky AA (2001) Analysis of time series structure. Chapman and Hall, CRC, Boca RatonCrossRefGoogle Scholar
  17. Gradstein C, Ryzhik IM (1968) Tables of integrals, sums, series and products. Phys-Math Publ, MoscowGoogle Scholar
  18. Greifinger C, Greifinger P (1978) Approximate method for determining ELF eigen-values in the Earth-ionosphere waveguide. Radio Sci 13:831–837CrossRefGoogle Scholar
  19. Greifinger PS, Mushtak VC, Williams ER (2007) On modeling the lower characteristic ELF altitude from aeronomical data. Radio Sci 42:RS2S12. doi: 10.1029/2006RS003500 CrossRefGoogle Scholar
  20. Hayakawa M, Otsuyama T (2002) FDTD analysis of ELF wave propagation in inhomogeneous subionospheric waveguide models. Appl Comput Electromagnet Soc J 17(3):239–244Google Scholar
  21. Hynninen EM, Galyuk YuP (1972) Field of a vertical electric dipole above the spherical Earth and a non-uniform in height atmosphere. In: Problems of wave diffraction and propagation, vol. 11. Leningrad State University Press, pp 109–119 (in Russian)Google Scholar
  22. Ishaq M, Jones DLl (1977) Method of obtaining radiowave propagation parameters for the Earth-ionosphere duct at ELF. Electron Lett 13:254–255CrossRefGoogle Scholar
  23. Jones DLl, Burke CP (1990) Zonal harmonic series expansions of Legendre functions and associated Legendre functions. J Phys A Math Gen 23:3159–3168CrossRefGoogle Scholar
  24. Jones DLl, Knott M (1999) Comparison of simplified and full-wave ELF propagation models, Abstracts of URSI General Assembly, Toronto, Ontario, Canada, 13–21 Aug 1999, section E6-10, p 295Google Scholar
  25. Jones DLl, Joyce GS (1989) The computation of ELF radio wave fields in the Earth-ionosphere duct. J Atmos Terr Phys 51:233–239CrossRefGoogle Scholar
  26. Kirillov VV (1993) Parameters of the Earth-ionosphere waveguide at ELF. Prob Diffr Wave Propag 25:35–52 (in Russian)Google Scholar
  27. Kirillov VV (1996) Two-dimension theory of propagation of ELF electromagnetic waves in the Earth-ionosphere cavity. Izvestiya Vuzov, Radiofizika 39:1103–1112 (in Russian)Google Scholar
  28. Kirillov VV (2000) Two-dimension theory of propagation of electromagnetic waves of ELF-VLF bands in the waveguide Earth-ionosphere. Prob Wave Diffr Propag, St-Petersburg State Univ Press 28:184–203 (in Russian)Google Scholar
  29. Kirillov VV, Kopeykin VN (2002) Solution of two dimension telegraph equation with anisotropic parameters. Izvestiya Vuzov, Radiofizika 45:1011–1024 (in Russian)Google Scholar
  30. Kirillov VV, Kopeykin VN, Mushtak VC (1997) Electromagnetic waves of ELF band in the Earth-ionosphere waveguide. Geomagn Aeronomia 37:114–120 (in Russian)Google Scholar
  31. Marple SL Jr (1987) Digital spectral analyses with applications. Prentice-Hall, Englewood CliffsGoogle Scholar
  32. Morente JA, Molina-Cuberos GJ, Portı JA, Schwingenschuh K, Besser BP (2003) A study of the propagation of electromagnetic waves in Titan’s atmosphere with the TLM numerical method. Icarus 162:374–384. doi: 10.1016/S0019-1035(03)00025-3 CrossRefGoogle Scholar
  33. Mushtak VC, Williams ER (2002) ELF propagation parameters for uniform models of the Earth-ionosphere waveguide. J Atmos Solar-Terr Phys 64:1989–2001CrossRefGoogle Scholar
  34. Nickolaenko AP, Hayakawa M (2002) Resonance in the Earth-ionosphere cavity. Kluwer Academic Publishers, Dordrecht 380 ppGoogle Scholar
  35. Nickolaenko AP, Rabinowicz LM (1982) Possible global electromagnetic resonances on the planets of the solar system. Translated from Kosmicheskie Issledovaniya, 20(1):82–88, Plenum Publishing CorporationGoogle Scholar
  36. Nickolaenko AP, Rabinowicz LM (1987) Applicability of ultralow—frequency global resonances for investigating lightning activity on Venus. Translated from Kosmicheskie Issledovaniya, 25(2):301–306, Plenum Publishing CorporationGoogle Scholar
  37. Nickolaenko AP, Rabinowicz LM (2000) Accelerating of the convergence of the time-domain solution for lightning stroke ELF pulses. Radiophys Electron 5:108–112 (in Russian)Google Scholar
  38. Nickolaenko AP, Rabinowicz LM, Hayakawa M (2004a) Time domain presentation for ELF pulses with accelerated convergence. Geophys Res Lett 31:L05808. doi: 10.1029/2003GL018700 CrossRefGoogle Scholar
  39. Nickolaenko AP, Rabinowicz LM, Hayakawa M (2004b) Natural ELF pulses in the time domain: series with accelerated convergence. IEEJ Trans Fundam Mater 124(12):1210–1215CrossRefGoogle Scholar
  40. Ogawa T, Komatsu M (2007) Analysis of Q-burst waveforms. Radio Sci 42:RS2S18. doi: 10.1029/2006RS003493 CrossRefGoogle Scholar
  41. Otsuyama T, Sakuma D, Hayakawa M (2003) FTDT analysis of ELF wave propagation and Schumann resonance for a subionospheric waveguide model. Radio Sci 38(6):1103. doi: 10.1029/2002RS002752 CrossRefGoogle Scholar
  42. Pechony O (2007) Modeling and simulations of Schumann resonance parameters observed at the mitzpe ramon field station (Study of the day-night asymmetry influence on Schumann resonance amplitude records), Ph.D. Thesis, Tel-Aviv University, Israel, March, 92 ppGoogle Scholar
  43. Pechony O, Price C (2004) Schumann resonance parameters calculated with a partially uniform knee model on Earth, Venus, Mars, and Titan. Radio Sci 39:RS5007. doi: 10.1029/2004RS003056 CrossRefGoogle Scholar
  44. Sentman DD (1990a) Approximate Schumann resonance parameters for a two-scale height ionosphere. J Atmos Terr Phys 52:35–46CrossRefGoogle Scholar
  45. Sentman DD (1990b) Electrical conductivity of Jupiter shallow interior and the formation of a resonant planetary—ionosphere cavity. Icarus 88:73–86CrossRefGoogle Scholar
  46. Simpson JA, Taflove A (2002) Two-dimensional FDTD model of antipodal ELF propagation and Schumann resonance of the Earth. Antennas Wirel Propag Lett 1(2):53–57CrossRefGoogle Scholar
  47. Troyan VN, Hayakawa M (2002) Inverse geophysical problems. TERRAPUB, Tokyo, 289 pGoogle Scholar
  48. Wait JR (1962) Electromagnetic waves in stratified media. Pergamon Press, OxfordGoogle Scholar
  49. Williams ER, Mushtak V, Nickolaenko AP (2006) Distinguishing ionospheric models using Schumann resonance spectra. J Geophys Res 111:D16107. doi: 10.1029/2005JD006944 CrossRefGoogle Scholar
  50. Yang H, Pasko VP (2005) Three-dimensional finite difference time domain modeling of the Earth-ionosphere cavity resonances. Geophys Res Lett 32:L03114. doi: 10.1029/2004GL021343 CrossRefGoogle Scholar
  51. Yang H, Pasko VP (2006) Three-dimensional finite difference time domain modeling of the diurnal and seasonal variations in Schumann resonance parameters. Radio Sci 41:RS2S14. doi: 10.1029/2005RS003402 Google Scholar
  52. Yang H, Pasko VP, Yair Y (2006) Three-dimensional finite difference time domain modeling of the Schumann resonance parameters on Titan, Venus, and Mars. Radio Sci 41(2):203. doi: 10.1029/2005RS003431 Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.National Academy of Sciences of the UkraineKharkovUkraine
  2. 2.The University of Electro-CommunicationsTokyoJapan

Personalised recommendations