Radar Observations of the Clear Atmosphere

  • Shoichiro Fukao
  • Kyosuke Hamazu
Chapter

Abstract

Refractive index perturbations of half the radar wavelength in scale mostly contribute to atmospheric radar backscattering. From the Doppler observations of upper atmosphere, vertical profiles of turbulence parameters such as energy dissipation rate and vertical eddy diffusivity can be deduced on certain conditions. Combined with the radar acoustic sounding system (RASS), atmospheric radar measurements can also provide vertical profiles of background virtual temperature and water vapor.In this chapter, the notion of radar detectability is first shown. Basic techniques used to retrieve wind velocity from radar measurements are then discussed. Next, the methods used for estimating turbulence parameters and other physical parameters obtained from atmospheric radar measurements are discussed. Finally, radar interferometric techniques for improving the spatial resolution are described.

Keywords

Atmospheric radar Wind measurements Temperature profile Vapor profile Radar interferometory 

References

  1. Adachi, T. 1996. Detailed temperature structure of meteorological disturbances observed with RASS (Radio Acoustic Sounding System), 173 pp. Ph.D. dissertation. Kyoto University.Google Scholar
  2. Alexander, S., T. Tsuda, J. Furumoto, T. Shimomai, T. Kozu, and M. Kawashima. 2006. A statistical overview of convection during the CPEA-I campaign. Journal of the Meteorological Society of Japan 84: 57–93.Google Scholar
  3. Alvarez, H., J. Aparici, J. May, and F. Olmos. 1997. A 45-MHz continuum survey of the southern hemisphere. Astronomy and Astrophysics Supplement Series 124: 315–328.Google Scholar
  4. Armijo, L. 1969. A theory for the determination of wind and precipitation velocities with Doppler radars. Journal of the Atmospheric Sciences 26: 570–573.Google Scholar
  5. Atlas, D. and C.W. Ulbrich. 1977. Path- and area-integrated rainfall measurement by microwave attenuation in 1–3 cm band. Journal of Applied Meteorology 16: 1322–1331.Google Scholar
  6. Atlas, D., R.S. Srivastava, and R.S. Sekhon. 1973. Doppler radar characteristics of precipitation at vertical incidence. Reviews of Geophysics and Space Physics 11: 1–35.Google Scholar
  7. Balsley, B.B., and W.L. Ecklund. 1972. A portable coaxial collinear antenna. IEEE Transactions on Antennas and Propagation AP-20: 512–516.Google Scholar
  8. Balsley, B.B., and K.S. Gage. 1980. The MST radar technique: Potential for middle atmospheric studies. Pure and Applied Geophysics 118: 452–493.Google Scholar
  9. Balsley, B.B., W.L. Ecklund, D.A. Carter, and P.E. Johnston. 1980. The MST radar at Poker Flat, Alaska. Radio Science 15: 213–223.Google Scholar
  10. Barratt, P. and I. C. Browne. 1953. A new method of measuring vertical air currents. Quart. J. Roy. Meteor. Soc. 79: 550.Google Scholar
  11. Battan, L.J. 1973. Radar observation of the atmosphere, 324 pp. Illinois: The University of Chicago Press.Google Scholar
  12. Bean, B.R., and E.J. Dutton. 1966. Radio meteorology. National Bureau of Standards, Monograph 92, Supt. Doc. U.S. Govt., Printing Office, Washington.Google Scholar
  13. Beard, K.V., and C. Chuang. 1987. A new model for the equilibrium shape of raindrops. Journal of the Atmospheric Sciences 44: 1509–1524.Google Scholar
  14. Benoit, A. 1968. Signal attenuation due to neutral oxygen and water vapor, rain and clouds. Microwave Journal 11: 73–80.Google Scholar
  15. Berger, T., and H.L. Groginsky. 1973. Estimation of the spectral moments of pulse trains. In International conference on information theory (preprints), Tel Aviv, Israel.Google Scholar
  16. Bienvenu, G., L. Kopp. 1983. Optimality of high resolution array processing using the eigensystem approach. IEEE Transactions on Acoustics, Speech, & Signal Processing 31: 1235–1248.Google Scholar
  17. Biggerstaff, M.I., and R.A. Houze, Jr. 1993. Kinematics and microphysics of the transition zone of the 10–11 June 1985 squall line. Journal of the Atmospheric Sciences 50: 3091–3110.Google Scholar
  18. Booker, H.G., and W.E. Gordon. 1950. A theory of radio scattering in the troposphere. Proceedings of the IRE 38: 401–412.Google Scholar
  19. Borgeaud, M., R.T. Shin, and J.A. Kong. 1987. Theoretical models for polarimetric radar clutter. Journal of Electromagnetic Waves and Applications 1: 73–89Google Scholar
  20. Brandes, E.A. 1977. Flow in severe thunderstorms observed by dual-Doppler radar. Monthly Weather Review 105: 113–120.Google Scholar
  21. Briggs, B.H. 1984. The analysis of spaced sensor records by correlation technique. In Handbook for MAP, vol. 13, 166–186. Urbana: ICSU Scientific Committee on Solar-Terrestrial Physics (SCOSTEP).Google Scholar
  22. Briggs, B.H., and R.A. Vincent. 1992. Spaced-antenna analysis in the frequency domain. Radio Science 27: 117–129.Google Scholar
  23. Bringi, V.N., and V. Chandrasekar. 2001. Polarimetric Doppler weather radar, 636 pp. New York: Cambridge University Press.Google Scholar
  24. Bringi, V.N., R. Hoferer, D.A. Brunkow, R. Schwerdtfeger, V. Chandrasekar, S.A. Rutledge, J. George, and P.C. Kennedy. 2011. Design and performance characteristics of the new 8.5-m dual-offset Gregorian antenna for the CSU-CHILL radar. Journal of Atmospheric and Oceanic Technology 28: 907–920.Google Scholar
  25. Browning, K.A. 1986. Conceptual models of precipitation systems. Weather and Forecasting 1: 23–41.Google Scholar
  26. Browning, K.A., and G.A. Monk. 1982. A simple model for the synoptic analysis of cold fronts. Quarterly Journal of the Royal Meteorological Society 108: 435–452.Google Scholar
  27. Browning, K.A., and R. Wexler. 1968. A determination of kinematic properties of a wind field using Doppler radar. Journal of Applied Meteorology 7: 105–113.Google Scholar
  28. Browning, K.A., J.C. Fankhauser, J.P. Chalon, P.J. Eccles, R.G. Strauch, F.H. Merrem, D.J. Musil, E.L. May, and W.R. Sand. 1976. Structure of an evolving hailstorm, Part V: Synthesis and implications for hail growth and hail suppression. Monthly Weather Review 104: 603–610.Google Scholar
  29. Capon, J. 1969. High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE 57: 1408–1418.Google Scholar
  30. Caughey, S.J., B.A. Crease, D.N. Asimakapoulos, and R.S. Cole. 1978. Quantitative bistatic acoustic sounding of the atmospheric boundary layer. Quarterly Journal of the Royal Meteorological Society 104: 146–161.Google Scholar
  31. CCIR. 1991. CCIR, Propagation data and prediction methods required for terrestrial line-of-site systems, CCIR Reports 338-6, V, ITU, Geneva, 1991.Google Scholar
  32. Cheong, B.L., M.W. Hoffman, R.D. Palmer, S.J. Fraiser, and F.J. López-Dekker. 2004. Pulse pair beamforming and the effects of reflectivity field variations on imaging radars. Radio Science 39:RS3014. doi:10.1029/2002RS002843.Google Scholar
  33. Cheong, B.L., M.W. Hoffman, R.D. Palmer, S.J. Frasier, and F.J. López-Dekker. 2006. Phased-array design for biological clutter rejection: Simulation and experimental validation. Journal of Atmospheric and Oceanic Technology 23: 585–598.Google Scholar
  34. Cheong, B.L., T.-Y. Yu, R.D. Palmer, K.-F. Yang, M.W. Hoffman, S.J. Frasier, and F.J. Lopez-Dekker. 2008. Effects of wind wield inhomogeneities on Doppler beam swinging received by an imaging radar. Journal of Atmospheric and Oceanic Technology 25: 1414–1422.Google Scholar
  35. Chilson, P.B., T.Y. Yu, R.G. Strauch, A. Muscinski, and R.D. Palmer. 2003. Implementation and validation of range imaging on a UHF radar wind profiler. Journal of Atmospheric and Oceanic Technology 104: 987–996.Google Scholar
  36. Cho, J.Y.N. 2009. Moving clutter spectral filter for terminal Doppler weather radar. In 34th International conference on radar meteorology (preprints). Williamsburg: American Meteorological Society, P5.2.Google Scholar
  37. Clifford, S.F., and T.I. Wang. 1977. The range limitation on radar-acoustic sounding system (RASS) due to atmospheric refractive turbulence. IEEE Transactions on Antennas and Propagation 25: 319–326.Google Scholar
  38. Cohn, S. 1995. Radar measurements of turbulent eddy dissipation rate in the troposphere: A comparison of techniques. Journal of Atmospheric and Oceanic Technology 12: 85–95.Google Scholar
  39. Cole, A.E., A. Court, and A.J. Kantor. 1965. Model atmospheres, In Handbook of geophysics and space environment, ed. S.L. Valley. Bedford: Office of Aerospace Research, USAF, Cambridge Research Laboratories, Chapter 2.
  40. Cooley, J.W., and J.W. Tukey. 1965. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19: 297–301.Google Scholar
  41. Costa, E., and F. Fougere. 1988. Cross-spectral analysis of spaced-receiver measurements. Radio Science 23: 129–139.Google Scholar
  42. Crane, R.K. 1980. A review of radar observations of turbulence in the lower stratosphere. Radio Science 15: 177–193.Google Scholar
  43. Crocker, S.C. 1988. TDWR PRF selection criteria, 57 pp. Project Rep. ATC-147, DOT/FAA/PM-87-25, MIT Lincoln Laboratory.Google Scholar
  44. Czechowsky, P., G. Schmidt, and R. Rüster. 1984. The mobile SOUSY Doppler radar: Technical design and first results. Radio Science 19: 441–450.Google Scholar
  45. Dalaudier, F., C. Sidi, M. Crochet, and J. Vernin. 1994. Direct evidence of “sheet” in the atmospheric temperature field. Journal of the Atmospheric Sciences 51: 237–248.Google Scholar
  46. Davies-Jones, R.P. 1979. Dual-Doppler coverage area as a function of measurement accuracy and spatial resolution. Journal of Applied Meteorology 18: 1229–1233.Google Scholar
  47. de Elía, R., and I. Zawadzki. 2000. Sidelobe contamination in bistatic radars. Journal of Atmospheric and Oceanic Technology 17: 1313–1329.Google Scholar
  48. de Elía, R., and I. Zawadzki. 2001. Optimal layout of a bistatic radar network. Journal of Atmospheric and Oceanic Technology 18: 1184–1194.Google Scholar
  49. Deirmendjian, D. 1969. Electromagnetic scattering on spherical polydispersions, 290 pp. New York: Elsevier.Google Scholar
  50. Dhaka, S.K., M. Takahashi, Y. Kawatani, S. Malik, Y. Shibagaki, and S. Fukao. 2003. Observations of deep convective updrafts in tropical convection and their role in the generation of gravity waves. Journal of the Meteorological Society of Japan 81: 1185–1199.Google Scholar
  51. Dhaka, S.K., M.K. Yamamoto, Y. Shibagaki, H. Hashiguchi, S. Fukao, and H.-Y. Chun. 2006. Equatorial Atmosphere Radar observations of short vertical wavelength gravity waves in the upper troposphere and lower stratosphere region induced by localized convection. Geophysical Research Letters 33: L19805. doi:10.1029/2006GL027026.Google Scholar
  52. Dicke, R.H. 1946. The measurement of thermal radiation at microwave frequencies. Review of Scientific Instruments 17: 268–275.Google Scholar
  53. Doviak, R.J. 1972. Comparison of bistatic and monostatic radar detection of clear air atmospheric targets. AIAA paper, 8 pp. No. 72–175, Copies available from AIAA library, 750 3rd Ave., New Yoke, NY 10017.Google Scholar
  54. Doviak, R.J., and R.D. Palmer. 2014. Polarimetric doppler weather radar. In Encyclopedia of atmospheric science, ed. G. North. 2nd ed. London: Elsevier.Google Scholar
  55. Doviak, R.J., and P.S. Ray. 1976. Error estimation in wind fields derived from dual-Doppler radar measurement. Journal of Applied Meteorology 15: 868–878.Google Scholar
  56. Doviak, R.J., and C.M. Weil. 1972. Bistatic radar detection of the melting layer. Journal of Applied Meteorology 11: 1012–1016.Google Scholar
  57. Doviak, R.J., and D.S. Zrnić. 1984. Doppler radar and weather observations, 458 pp. Orlando: Academic.Google Scholar
  58. Doviak, R.J., and D.S. Zrnić. 2006. Doppler radar and weather observations, 562 pp. 2nd ed. Mineola: Dover.Google Scholar
  59. Doviak, R.J., J. Goldhirsh, and A.R. Miller. 1972. Bistatic-radar detection of high-altitude clear-air atmospheric targets. Radio Science 7: 993–1003.Google Scholar
  60. Doviak, R.J., R.J. Lataitis, and C.L. Holloway. 1996. Cross correlations and cross spectra for spaced antenna wind profilers 1. Theoretical analysis. Radio Science 31: 157–180.Google Scholar
  61. Doviak, R.J., V. Bringi, A. Ryzhkov, A. Zahrai, and D. Zrnić. 2000. Considerations for polarimetric upgrades to operational WSR-88D radars. Journal of Atmospheric and Oceanic Technology 17: 257–278.Google Scholar
  62. Droegemeier, K.K., and R.B. Wilhelmson. 1987. Numerical simulation of thunderstorm outflow dynamics, Part I: Outflow sensitivity experiments and turbulence dynamics. Journal of the Atmospheric Sciences 44: 1180–1210.Google Scholar
  63. Easterbrook, C.C. 1974. Estimating horizontal wind fields by two-dimensional curve fitting of single Doppler radar measurements. In 16th Conference on radar meteorology (preprints), 214–219. Boston: American Meteorological Society.Google Scholar
  64. Ecklund, W.L., D.A. Carter, and B.B. Balsley. 1988. A UHF wind profiler for the boundary layer: Brief description and initial results. Journal of Atmospheric and Oceanic Technology 5: 432–441.Google Scholar
  65. Einaudi, F., D.P. Lalas, and G.E. Perona. 1978. The role of gravity waves in tropospheric processes. Pure and Applied Geophysics 117: 627–663.Google Scholar
  66. Evans, J.V. 1969. Theory and practice of troposphere study by Thomson scatter radar. Proceedings of the IEEE 57: 496–500.Google Scholar
  67. Fang, M., and R.J. Doviak. 2008. Coupled contributions in the Doppler radar spectrum width equation. Journal of Atmospheric and Oceanic Technology 25: 2245–2258.Google Scholar
  68. Fang, M., R.J. Doviak, and V. Melnikov. 2004. Spectrum width measured by WSR-88D: Error sources and statistics of various weather phenomena. Journal of Atmospheric and Oceanic Technology 21: 888–904.Google Scholar
  69. Fang, M., R.J. Doviak, and B.A. Albrecht. 2012. Analytical expressions for Doppler spectra of scatter from hydrometeors observed with a vertically directed radar beam. Journal of Atmospheric and Oceanic Technology 29: 500–509.Google Scholar
  70. Farley, D., H. Ierkic, and B. Fejer. 1981. Radar interferometry: A new technique for studying plasma turbulence in the ionosphere. Journal of Geophysical Research 86: 1467–1472.Google Scholar
  71. Franke, S.J. 1990. Pulse compression and frequency domain interferometry with a frequency-hopped MST radar. Radio Science 25: 565–574.Google Scholar
  72. Fraser, G.J. 1968. Seasonal variation of southern hemisphere mid-latitude winds at altitudes of 70–100 km. Journal of Atmospheric and Terrestrial Physics 30: 707–720.Google Scholar
  73. Friend, A.W. 1949. Theory and practice of tropospheric sounding by radar. Proceedings of the IRE 37: 116–138.Google Scholar
  74. Fritts, D.C. 1984. Shear excitation of atmospheric gravity waves, 2. Nonlinear radiation from a free shear layer. Journal of the Atmospheric Sciences 41: 524–537.Google Scholar
  75. Fritts, D.C., and Z. Luo. 1992. Gravity wave excitation by geostrophic adjustment of the jet stream, Part 1: Two-dimensional forcing. Journal of the Atmospheric Sciences 49: 681–697.Google Scholar
  76. Fritts, D.C., and G.D. Nastrom. 1992. Sources of mesoscale variability of gravity waves, Part 2: Frontal, convective and jet stream excitation. Journal of the Atmospheric Sciences 49: 111–127.Google Scholar
  77. Fujita, T.T. 1985. The downburst: Microburst and macroburst, SMRP Res. Rep. 210, 122 pp. Chicago: University of Chicago.Google Scholar
  78. Fujita, T.T., and J. McCarthy. 1990. The application of weather radar to aviation meteorology. In Radar in meteorology, ed. D. Atlas, 657–681. Boston: American Meteorological Society.Google Scholar
  79. Fujiwara, M., M.K. Yamamoto, H. Hashiguchi, T. Horinouchi, and S. Fukao. 2003. Turbulence at the tropopause due to breaking Kelvin waves observed by the Equatorial Atmosphere Radar. Geophysical Research Letters 30: 1171. doi:10.1029/2002GL01627.Google Scholar
  80. Fujiyoshi, Y. 2001. Three dimensional radar echo structure of a vortex-like disturbance developed in a strong horizontal wind shear zone. Tenki, Meteorological Society of Japan 48: 3–4 (in Japanese).Google Scholar
  81. Fujiyoshi, Y., and B. Geng. 1995. Dual Doppler radar observation of a tropical rainband developed from two convective clouds. Journal of the Meteorological Society of Japan 73: 471–490.Google Scholar
  82. Fujiyoshi, Y., N. Yoshimoto, and T. Takeda. 1998. A dual-Doppler radar study of longitudinal-mode snowbands, Part I: A three dimensional kinematic structure of meso-γ-scale convective cloud systems within a longitudinal-mode snowband. Monthly Weather Review 126: 72–91.Google Scholar
  83. Fukao, S. 2006. Coupling processes in the equatorial atmosphere (CPEA): A project overview. Journal of the Meteorological Society of Japan 84: 1–18.Google Scholar
  84. Fukao, S., and R.D. Palmer. 1991. Spatial and frequency domain interferometry using the MU radar: A tutorial and recent developments. Journal of Geomagnetism and Geoelectricity 43: 645–666.Google Scholar
  85. Fukao, S., T. Sato, S. Kato, R.M. Harper, R.F. Woodman, and W.E. Gordon. 1979. Mesospheric winds and waves over Jicamarca on May 23–24. Journal of Geophysical Research 84: 4379–4386.Google Scholar
  86. Fukao, S., S. Kato, T. Aso, M. Sasada, and T. Makihira. 1980a: Middle and upper atmosphere radar (MUR) under design in Japan. Radio Science 15: 225–231.Google Scholar
  87. Fukao, S., K. Wakasugi, and S. Kato. 1980b. Radar measurement of short-period atmospheric waves and related scattering properties at the altitude of 13–25 km over Jicamarca. Radio Science 15: 431–438.Google Scholar
  88. Fukao, S., T. Sato, T. Tsuda, S. Kato, K. Wakasugi, and T. Makihira. 1985a. The MU radar with an active phased array system: 1. Antenna and power amplifiers. Radio Science 20: 1155–1168.Google Scholar
  89. Fukao, S., T. Tsuda, T. Sato, S. Kato, K. Wakasugi, and T. Makihira. 1985b. The MU radar with an active phased array system: 2. In-house equipment. Radio Science 20: 1169–1176.Google Scholar
  90. Fukao, S., T. Sato, and S. Kato. 1985c. Monitoring of the MU radar antenna pattern by satellite OHZORA (EXOS-C). Journal of Geomagnetism and Geoelectricity 37: 431–441.Google Scholar
  91. Fukao, S., K. Wakasugi, T. Sato, T. Tsuda, I. Kimura, N. Takeuchi, M. Matsuo, and S. Kato. 1985d. Simultaneous observation of precipitating atmosphere by VHF band and C/Ku band radars. Radio Science 20: 622–630.Google Scholar
  92. Fukao, S., K. Wakasugi, T. Sato, S. Morimoto, T. Tsuda, I. Hirota, I. Kimura, and S. Kato. 1985e. Direct measurement of air and precipitation particle motion by very high frequency Doppler radar. Nature 316: 712–714.Google Scholar
  93. Fukao, S., T. Sato, H. Hojo, I. Kimura, and S. Kato. 1986. A numerical consideration on edge effect of planar dipole phased arrays. Radio Science 21: 1–12.Google Scholar
  94. Fukao, S., T. Sato, T. Tsuda, S. Kato, M. Inaba, and I. Kimura. 1988a. VHF Doppler radar determination of the momentum flux in the upper troposphere and lower stratosphere: Comparison between the three- and four-beam methods. Journal of Atmospheric and Oceanic Technology 5: 57–69.Google Scholar
  95. Fukao, S., M. Inaba, I. Kimura, T. Sato, T. Tsuda, and S. Kato. 1988b. A systematic error in MST/ST radar measurement induced due to finite range volume effect: 2. Numerical considerations. Radio Science 23: 74–82.Google Scholar
  96. Fukao, S., M.D. Yamanaka, H. Matsumoto, T. Sato, T. Tsuda, and S. Kato. 1989. Wind fluctuations near a cold vortex-tropopause funnel system observed by the MU radar. Pure and Applied Geophysics 130: 463–479.Google Scholar
  97. Fukao, S., T. Sato, T. Tsuda, M. Yamamoto, M.D. Yamanaka, and S. Kato. 1990. MU radar: New capabilities and system calibrations. Radio Science 25: 477–485.Google Scholar
  98. Fukao, S., M.C. Kelley, T. Shirakawa, T. Takami, M. Yamamoto, T. Tsuda, and S. Kato. 1991. Turbulent upwelling of the mid-latitude ionosphere: 1. Observational results by the MU radar. Journal of Geophysical Research 96: 3725–3746.Google Scholar
  99. Fukao, S., N. Ao, M.D. Yamanaka, W.K. Hocking, T. Sato, M. Yamamoto, T. Nakamura, T. Tsuda, and S. Kato. 1994. Seasonal variability of vertical eddy diffusivity in the middle atmosphere I: Three-year observations by the MU radar. Journal of Geophysical Research 99: 18973–18987.Google Scholar
  100. Fukao, S., H. Hashiguchi, M. Yamamoto, T. Tsuda, T. Nakamura, M. K. Yamamoto, T. Sato, M. Hagio, and Y. Yabugaki. 2003. Equatorial Atmosphere Radar (EAR): System description and first results. Radio Science 38: 1053. doi:10.1029/2002RS002767.Google Scholar
  101. Furumoto, J. 2002. Observation of turbulence echo characteristics and humidity profiles with the MU radar-RASS, 134 pp. Ph.D. dissertation. Kyoto University.Google Scholar
  102. Furumoto, J., K. Kurimoto, and T. Tsuda. 2003. Continuous observations of humidity profiles with the MU radar-RASS combined with GPS and rawinsonde measurements. Journal of Atmospheric and Oceanic Technology 20: 23–41.Google Scholar
  103. Furumoto, J., T. Tsuda, S, Iwai, T, Kozu. 2006. Continuous humidity monitoring in a tropical region with the equatorial atmosphere radar. Journal of Atmospheric and Oceanic Technology 23: 538–551.Google Scholar
  104. Gage, K.S. 1990. Radar observations of the free atmosphere: Structure and dynamics. In Radar in meteorology, ed. D. Atlas, 534–565. Boston: American Meteorological Society.Google Scholar
  105. Gage, K.S., and B.B. Balsley. 1978. Doppler radar probing of the clear atmosphere. Bulletin of the American Meteorological Society 59: 1074–1093.Google Scholar
  106. Gage, K.S, and B.B. Balsley. 1980. On the scattering and reflection mechanisms contributing to clear air radar echoes from the troposphere, stratosphere, and mesosphere. Radio Science 15: 243–257.Google Scholar
  107. Gage, K.S., and J.L. Green. 1978. Evidence for specular reflection from monostatic VHF radar observations of the atmosphere. Radio Science 13: 991–1001.Google Scholar
  108. Gage, K.S., and J.L. Green. 1979. Tropopause detection by partial specular reflection with very-high-frequency radar. Science 203: 1238–1240.Google Scholar
  109. Gage, K.S., and J.L. Green. 1982. An objective method for the determination of tropopause height from VHF radar observations. Journal of Applied Meteorology 21: 1150–1154.Google Scholar
  110. Gage, K.S., B.B. Balsley, and J.L. Green. 1981. Fresnel scattering model for the specular echoes observed by VHF radar. Radio Science 16: 1447–1453.Google Scholar
  111. Gage, K.S., W.L. Ecklund, and B.B. Balsley. 1985. A modified Fresnel scattering model for the parameterization of Fresnel returns. Radio Science 20: 1493–1501.Google Scholar
  112. Gage, K.S., B.B. Balsley, W.L. Ecklund, D.A. Carter, and J.R. McAfee. 1991. Wind profiler-related research in the tropical Pacific. Journal of Geophysical Research 96: 3209–3220.Google Scholar
  113. Gage, K.S., J.R. McAfee, and C.R. Williams. 1996. On the annual variation of tropospheric zonal winds observed above Christmas Island in the central equatorial Pacific. Journal of Geophysical Research 101: 15061–15070.Google Scholar
  114. Gavrilov, N.M. 1992. Internal gravity waves in the mesopause region: Hydrodynamic sources and climatological patterns. Advances in Space Research 12: 10113–10121.Google Scholar
  115. Gavrilov, N.M., S. Fukao, T. Nakamura, T. Tsuda, M.D. Yamanaka, and M. Yamamoto. 1996. Statistical analysis of gravity waves observed with the middle and upper atmosphere radar in the middle atmosphere, 1. Method and general characteristics. Journal of Geophysical Research 101: 29511–29521.Google Scholar
  116. Gavrilov, N.M., S. Fukao, and H. Hashiguchi. 1999. Multi-beam MU radar measurements of advective accelerations in the atmosphere. Geophysical Research Letters 26: 315–318.Google Scholar
  117. Geerts, B., and P.V. Hobbs. 1991. Organization and structure of clouds and precipitation on the Mid-Atlantic Coast of the United States of America. Part IV: Retrieval of the thermodynamic and cloud microphysical structure of a frontal rainband from Doppler radar data. Journal of the Atmospheric Sciences 48: 1287–1305.Google Scholar
  118. Geller, M.A. 1983. Dynamics of the middle atmosphere (Tutorial lecture). Space Science Reviews 34: 359–375.Google Scholar
  119. Gill, A.E. 1982. Atmosphere-ocean dynamics, 662 pp. London: Academic.Google Scholar
  120. Gordon, W.E. 1958. Incoherent scattering of radio waves by free electrons with applications to space explorations by radar. Proceedings of the IRE 46: 1824–1829.Google Scholar
  121. Gordon, W.E., and L.M. LaLonde. 1961. The design and capabilities of an ionospheric radar probe. IRE Transactions on Antennas and Propagation AP-9: 17–22.Google Scholar
  122. Gorgucci, E., G. Scarchilli, and V. Chandrasekar. 1999. Specific differential phase estimation in the presence of nonuniform rainfall medium along path. Journal of Atmospheric and Oceanic Technology 16: 1690–1697.Google Scholar
  123. Gossard, E.E., and R.G. Strauch. 1983. Radar observation of clear air and clouds, 280 pp. Amsterdam: Elsevier.Google Scholar
  124. Gossard, E.E., J.H. Richter, and D. Atlas. 1970. Internal waves in the atmosphere from high-resolution radar measurements. Journal of Geophysical Research 75: 3523–3536.Google Scholar
  125. Gossard, E.E., S. Gutman, B.B. Stankov, and D.E. Wolfe. 1999. Profile of radio refractive index and humidity derived from radar wind profilers and the Global Positioning System. Radio Science 34: 371–383.Google Scholar
  126. Gunn, K.L.S., and T.W.R. East. 1954. The microwave properties of precipitation particles. Quarterly Journal of the Royal Meteorological Society 80: 522–545.Google Scholar
  127. Gunn, R., and G.D. Kinzer. 1949. The terminal velocity of fall for water droplets in stagnant air. Journal of Meteorology 6: 243–248.Google Scholar
  128. Gunn, K.L.S., and R.S. Marshall. 1958. The distribution of size of aggregate snowflakes. Journal of Meteorology 15: 452–466.Google Scholar
  129. Hamazu, K. 2002. Development of Doppler radars for studying aviation weather, 207 pp. Ph.D. dissertation. Kyoto University.Google Scholar
  130. Hamazu, K., K. Hata, M. Ishihara, H. Hashiguchi, and S. Fukao. 2000a. Development of a C-band Doppler radar for low-level wind shear detection. IEICE, J83-B 6: 894–909 (in Japanese).Google Scholar
  131. Hamazu, K., M. Ishihara, K. Hata, H. Hashiguchi, and S. Fukao. 2000b. Development of a low-level wind shear detection algorithm for a Doppler weather radar. IEICE, J83-B 7: 1067–1080 (in Japanese).Google Scholar
  132. Hamazu, K., K. Hemmi, K. Hayashi, H. Hashiguchi, and S. Fukao. 2002. Development of a 5.3-GHz klystron for a pulse Doppler radar. IEICE E85-B: 1152–1159.Google Scholar
  133. Hamazu, K., H. Hashiguchi, T. Wakayama, T. Matsuda, R.J. Doviak, and S. Fukao. 2003. A 35-GHz scanning Doppler radar for fog observations. Journal of Atmospheric and Oceanic Technology 20: 972–986.Google Scholar
  134. Hanle, E. 1986. Survey of bistatic and multistatic radar. Proceedings of the IEE 133: 587–595.Google Scholar
  135. Hansen, R.C. 2009. Phased array antennas, 547 pp. 2nd ed. Hoboken: Wiley.Google Scholar
  136. Hardy, K.R., and H. Ottersten. 1969. Radar investigations of convective patterns in the clear atmosphere. Journal of the Atmospheric Sciences 26: 666–672.Google Scholar
  137. Harris, F.J. 1978. On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE 66: 51–83.Google Scholar
  138. Hartree, D.R., J.G. Michel, and P. Nicolson. 1946. Practical methods for the solution of the equations of tropospheric refraction. In Meteorological factors in radio wave propagation, 127–168. London: Physical Society.Google Scholar
  139. Hashiguchi, H., M. Yamamoto, S. Fukao, T. Tsuda, M.D. Yamanaka, T. Nakamura, T. Sato, S. Kato, T. Makihira, and K. Hamazu. 1992. Development of a boundary layer radar. In International symposium on middle atmosphere science (preprints), 23–37 March, Kyoto, 46–47.Google Scholar
  140. Hashiguchi, H., M.D. Yamanaka, T. Tsuda, M. Yamamoto, T. Nakamura, T. Adachi, S. Fukao, T. Sato, and D.L. Tobing. 1995a. Diurnal variations of the planetary boundary layer observed with an L-band clear-air Doppler radar. Boundary-Layer Meteorology 74: 419–424.Google Scholar
  141. Hashiguchi, H., S. Fukao, T. Tsuda, M.D. Yamanaka, D.L. Tobing, T. Sribimawati, S.W.B. Harijono, and H. Wiryosumarto. 1995b. Observations of the planetary layer over equatorial Indonesia with an L-band clear-air Doppler radar: Initial results. Radio Science 30: 1043–1054.Google Scholar
  142. Hashiguchi, H., S. Fukao, Y. Moritani, T. Wakayama, and S. Watanabe. 2004. A lower troposphere radar: 1.3-GHz active phased-array type wind profiler with RASS. Journal of the Meteorological Society of Japan 82: 915–931.Google Scholar
  143. Hassenpflug, G., P.B. Rao, M. Yamamoto, and S. Fukao. 2003. MU radar spaced antenna observations with varying apertures: Scatterer and antenna contributions to the ground diffraction pattern. Radio Science 38: 1043. doi:10.1029/2002RS002751.Google Scholar
  144. Hassenpflug, G., M. Yamamoto, H. Luce, and S. Fukao. 2008. Description and demonstration of the new middle and upper atmosphere radar imaging system: 1-D, 2-D, and 3-D imaging of troposphere and stratosphere. Radio Science 43: 2013. doi:10.1029/2006RS003603.Google Scholar
  145. Hauser, D., and P. Amayenc. 1981. A new method for deducing hydrometeor-size distributions and vertical air motions from Doppler radar measurements at vertical incidence. Journal of Applied Meteorology 20: 547–555.Google Scholar
  146. Hauser, D., F. Roux, and P. Amayenc. 1988. Comparison of two method for the retrieval of thermodynamic and microphysical variables from Doppler radar measurements: Application to the case of a tropical squall line. Journal of the Atmospheric Sciences 45: 1285–1303.Google Scholar
  147. Heisenberg, W. 1948. On the theory of statistical and isotropic turbulence. Proceedings of the Royal Society A 195: 402–406.Google Scholar
  148. Heiss, W.H., D.L. McGrew, and D.S. Sirmans. 1990. NEXRAD; Next generation weather radar (WSR-88D). Microwave Journal 33: 79–98.Google Scholar
  149. Hélal D., M. Crochet, H. Luce, and E. Spano. 2001. Radar imaging and high-resolution array processing applied to a classical VHF-ST profiler. Journal of Atmospheric and Solar-Terrestrial Physics 63: 263–274.Google Scholar
  150. Herman, B.M., and L.J. Battan. 1961. Calculations of mie back-scattering from melting ice spheres. Journal of Meteorology 18: 468–478.Google Scholar
  151. Hill, R.J. 1978. Spectra of fluctuations in refractivity, temperature, humidity, and the temperature–humidity cospectrum in the inertial and dissipation range. Radio Science 13: 935–961.Google Scholar
  152. Hill, R.J., and S.F. Clifford. 1978. Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation. Journal of the Optical Society of America 68: 892–899.Google Scholar
  153. Hines, C.O. 1968. A possible source of waves in noctilucent clouds. Journal of the Atmospheric Sciences 25: 937–942.Google Scholar
  154. Hirono, M., H. Luce, M. Yamamoto, and S. Fukao. 2004. Horizontal maps of echo power in the lower stratosphere using the MU radar. Annales Geophysicae 22: 717–724.Google Scholar
  155. Hirota, I., and T. Niki. 1986. Inertia-gravity waves in the troposphere and stratosphere observed by the MU radar. Journal of the Meteorological Society of Japan 64: 995–999.Google Scholar
  156. Hitschfeld, W.F., and J. Bordan. 1954. Errors inherent in the radar measurement of rainfall at attenuating wavelengths. Journal of Meteorology 11: 58–67.Google Scholar
  157. Hobbs, P.V. 1978. Organization and structure of clouds and precipitation on the mesoscale and microscale in cyclonic storms. Reviews of Geophysics and Space Physics 16: 741–755.Google Scholar
  158. Hocking, W.K. 1983. On the extraction of atmospheric turbulence parameters from radar backscatter Doppler spectra—I. Theory. Journal of Atmospheric and Terrestrial Physics 45: 89–102.Google Scholar
  159. Hocking, W.K. 1985. Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques. A review. Radio Science 20: 1403–1422.Google Scholar
  160. Hocking, W.K. 1988. Two years of continuous measurements of turbulence parameters in the upper mesosphere and lower thermosphere made with a 2-MHz radar. Journal of Geophysical Research 93: 2475–2491.Google Scholar
  161. Hocking, W.K. 1997a. System design, signal processing procedures and preliminary results for the Canadian (London, Ontario) VHF atmospheric radar. Radio Science 32: 687–706.Google Scholar
  162. Hocking, W.K. 1997b. Recent advances in radar instrumentation and techniques for studies of the mesosphere, stratosphere, and troposphere. Radio Science 32: 2241–2270.Google Scholar
  163. Hocking, W.K., T. Thayaparan, and J. Jones. 1997. Meteor decay times and their use in determining a diagnostic mesospheric temperature–pressure parameter: Methodology and one year of data. Geophysical Research Letters 24: 2977–2980.Google Scholar
  164. Holloway, C.L., R.J. Doviak, and S.A. Cohen. 1997a. Cross correlations of fields scattered by horizontally anisotropic refractive index irregularities. Radio Science 32: 1911–1920.Google Scholar
  165. Holloway, C.L., R.J. Doviak, S.A. Cohn, R.J. Lataitis, and J.S. Van Baelen. 1997b. Cross correlations and cross spectra for spaced antenna wind profilers 2. Algorithms to estimate wind and turbulence. Radio Science 32: 967–982.Google Scholar
  166. Houze, R.A. Jr. 1993. Cloud dynamics, 570 pp. San Diego: Academic.Google Scholar
  167. Houze, R.A. Jr., J.D. Locatelli, and P.V. Hobbs. 1976. Dynamics and cloud microphysics of the rainbands in an occluded frontal system. Journal of the Atmospheric Sciences 33: 1921–1936.Google Scholar
  168. Houze, R.A. Jr., S.A. Rutledge, M.I. Biggerstaff, and B.F. Smull. 1989. Interpretation of Doppler weather-radar displays in midlatitude mesoscale convective systems. Bulletin of the American Meteorological Society 70: 608–619.Google Scholar
  169. Houze R.A. Jr., B.F. Smull, and P. Dodge. 1990. Mesoscale organization of springtime rainstorms in Oklahoma. Monthly Weather Review 117: 613–654.Google Scholar
  170. Hubbert, J., and V.N. Bringi. 1995. An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. Journal of Atmospheric and Oceanic Technology 12: 643–648.Google Scholar
  171. Hubbert, J., V. Chandrasekar, and V.N. Bringi. 1993. Processing and interpretation of coherent dual-polarized radar measurements. Journal of Atmospheric and Oceanic Technology 10: 155–164.Google Scholar
  172. Hubbert, J.C., V.N. Bringi, and D. Brunkow. 2003. Studies of the polarimetric covariance matrix. Part I: Calibration methodology. Journal of Atmospheric and Oceanic Technology 20: 696–706.Google Scholar
  173. Hubbert, J.C., S.M. Ellis, M. Dixon, and G. Meymaris. 2010. Modeling, error analysis, and evaluation of dual-polarization variables obtained from simultaneous horizontal and vertical polarization transmit radar, Part II: Experimental data. Journal of Atmospheric and Oceanic Technology 27: 1599–1607.Google Scholar
  174. Ice, R.L., R.D. Rhoton, D.S. Saxion, N.K. Patel, D. Sirmans, D.A. Warde, D.L. Rachel, and R.G. Fehlen. 2004. Radar Operations Center (ROC) evaluation of the WSR-88D open radar data acquisition (ORDA) system signal processing. In 20th International conference on interactive information and processing systems for meteorology, oceanography, and hydrology, Seattle, WA. Boston: American Meteorological Society, paper 5.5.Google Scholar
  175. Ice, R.L., G.T. McGehee, R.D. Rhoton, D.S. Saxion, D.A. Warde, R.G. Guenther, D. Sirmans, and D.L. Rachel. 2005. Radar Operations Center (ROC) evaluation of new signal processing techniques for the WSR-88D. In 21th international conference on interactive information and processing systems for meteorology, oceanography, and hydrology, San Diego, CA. Boston: American Meteorological Society, paper P1.4.Google Scholar
  176. IEICE. 2008. Antenna engineering handbook, 1098 pp. 2nd ed. Tokyo: Ohmsha (in Japanese).Google Scholar
  177. Ishihara, M., Z. Yanagisawa, H. Sakakibara, K. Matsuura and J. Aoyagi. 1986. Structure of a typhoon rainband observed by two Doppler radars. Journal of the Meteorological Society of Japan 64: 923–939.Google Scholar
  178. Ishihara, M., Y. Kato, T. Abo, K. Kobayashi, and Y. Izumikawa. 2006. Characteristics and performance of the operational wind profiler network of the Japan Meteorological Agency. Journal of the Meteorological Society of Japan 84: 1085–1096.Google Scholar
  179. ITU-R. 2001. Attenuation by atmospheric gases. In ITU-R Recommendations ITU-R P. 676-5. Geneva, Switzerland: International Telecommunications Union.Google Scholar
  180. Iwanami, K., R. Misumi, M. Maki, T. Wakayama, K. Hata, and S. Watanabe. 2001. Development of a multiparameter radar system on mobile platform. In 30th Conference on radar meteorology (preprints), 104–106. Boston: American Meteorological Society.Google Scholar
  181. Jackson, M.C. 1986. The geometry of bistatic radar systems. Proceedings of the IEE 133: 604–612.Google Scholar
  182. Jameson, A.R. 1985. Microphysical interpretation of multiparameter radar measurements in rain, Part III: Interpretation and measurement of propagation differential phase shift between orthogonal linear polarizations. Journal of the Atmospheric Sciences 42: 607–614.Google Scholar
  183. Jameson, A.R. 1992. The effect of temperature on attenuation correction schemes in rain using polarization propagation differential phase shift. Journal of Applied Meteorology 31: 1106–1118.Google Scholar
  184. Jameson, A.R., and D.B. Johnson. 1990. Cloud microphysics and radar. In Radar in meteorology, ed. D. Atlas, 323–340. Boston: American Meteorological Society.Google Scholar
  185. Janssen, L., and G. van der Spek. 1985. The shape of Doppler spectra from precipitation. IEEE Trans. Aerosp. Electron. Syst. 21: 208–219.Google Scholar
  186. Johnson, R.H., and P.J. Hamilton. 1988. The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line. Monthly Weather Review 116: 1444–1472.Google Scholar
  187. Jorgensen, D.P., and P.T. Willis. 1982. A Z-R relationship for hurricanes. Journal of Applied Meteorology 21: 356–366.Google Scholar
  188. Joss, J., and A. Waldvogel. 1970. A method to improve the accuracy of radar-measured amounts of precipitation. In 14th Conference on radar meteorology (preprints), 237–238. Boston: American Meteorological Society.Google Scholar
  189. Kato, S. 1980. Dynamics of the upper atmosphere, 233 pp. Dordrecht: D. Reidel Publishing.Google Scholar
  190. Kato, S., K. Fukuyama, K. Wakasugi, T. Sato, and S. Fukao. 1982. Middle atmosphere observations with large scale MST radar. Research Note. Journal of the Meteorological Society of Japan 144, 1–55 (in Japanese).Google Scholar
  191. Kato, S., T. Ogawa, T. Tsuda, T. Sato, I. Kimura, and S. Fukao. 1984. The middle and upper atmosphere radar: First results using a partial system. Radio Science 19: 1475–1484.Google Scholar
  192. Kawashima, M., K. Tsuboki, and T. Asai. 1995. Maintenance mechanism and thermodynamic structure of a Baiu frontal rainband retrieved from dual Doppler radar observations. Journal of the Meteorological Society of Japan 73: 717–735.Google Scholar
  193. Keenan, T.D. 2003. Hydrometeor classification with a C-band polarimetric radar. Australian Meteorological Magazine 52: 23–31.Google Scholar
  194. Keer, D.E. 1951. Propagation of short radio waves, 728 pp. New York: McGraw-Hill.Google Scholar
  195. Kilburn, C., S. Fukao, and M. Yamamoto. 1995. Extended period frequency domain interferometry observations at stratospheric and tropospheric heights. Radio Science 30: 1099–1109.Google Scholar
  196. Kingsmill, D.E., and R.M. Wakimoto. 1991. Kinematic, dynamic, and thermodynamic analysis of a weakly sheared thunderstorm over northern Alabama. Monthly Weather Review 119: 262–297.Google Scholar
  197. Kobayashi, T., and A. Adachi. 2001. Measurements of rain-drop breakup by using UHF wind profilers. Geophysical Research Letters 28: 4071–4072.Google Scholar
  198. Kodaira, N. 1990. History of radar meteorology in Japan. In Radar in meteorology, ed. D. Atlas, 69–76. Boston: American Meteorological Society.Google Scholar
  199. Komabayashi, M., T. Gonda, and K. Isono. 1964. Lifetime of water drops before breaking and size distribution of fragment drops. Journal of the Meteorological Society of Japan 42: 330–340.Google Scholar
  200. Konrad, T.G. 1970. The dynamics of the convective process in clear air as seen by radar. Journal of the Atmospheric Sciences 27: 1138–1147.Google Scholar
  201. Koscielny, A.J., R.J. Doviak, and R. Rabin. 1982. Statistical considerations in the estimation of divergence from single-Doppler radar and application to prestorm boundary-layer observations. Journal of Applied Meteorology 21: 197–210.Google Scholar
  202. Kozu, T., T. Kawanishi, H. Kuroiwa, M. Kojima, K. Oikawa, H. Kumagai, K. Okamoto, M. Okumura, H. Nakatsuka, and K. Nishikawa. 2001. Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Transactions on Geoscience and Remote Sensing 39: 102–116.Google Scholar
  203. Kozu, T., T. Shimomai, Z. Akramin, Marzuki, Y. Shibagaki, and H. Hashiguchi. 2005. Intraseasonal variation of raindrop size distribution at Koto Tabang, West Sumatra, Indonesia. Geophysical Research Letters 32: L07803. doi:10.1029/2004GL022340.Google Scholar
  204. Kropfli, R.A., S.Y. Matrosov, T. Uttal, B.W. Orr, A.S. Frisch, K.A. Clark, B.W. Bartram, R.F. Reinking, J.B. Snider, and B.E. Martner. 1995. Cloud physics studies with 8 mm wavelength radar. Atmospheric Research 35: 299–313.Google Scholar
  205. Kudeki, E., and G.R. Stitt. 1987. Frequency domain interferometry: A high resolution radar technique for studies of atmospheric turbulence. Geophysical Research Letters 14: 198–201.Google Scholar
  206. Kudeki, E., and F. Sürücü. 1991. Radar interferometric imaging of field-aligned plasma irregularities in the equatorial electrojet. Geophysical Research Letters 18: 41–44.Google Scholar
  207. Kudeki, E., and R.F. Woodman. 1990. A post-statistic steering technique for MST radar applications. Radio Science 25: 591–594.Google Scholar
  208. Kurosaki, S., M.D. Yamanaka, H. Hashiguchi, T. Sato, and S. Fukao. 1996. Vertical eddy diffusivity in the lower and middle atmosphere: A climatology based on the MU radar observations during 1986–1992. Journal of Atmospheric and Terrestrial Physics 58: 727–734.Google Scholar
  209. Laird, B.G. 1981. On ambiguity resolution by random phase processing. In 20th International conference on radar meteorology (preprints), 327–331. Boston: American Meteorological Society.Google Scholar
  210. Laird, B.G., and J.E. Evans. 1982. FAA weather radar surveillance requirements in the context of NEXRAD. MIT Lincoln Laboratory Project Rep., ATC-112, DOT/FAA-RD-81-111.Google Scholar
  211. Lane, J.A., and J.A. Saxton. 1952. Dielectric dispersion in pure polar liquids at very high radio frequencies. Proceedings of the Royal Society A 213: 400–408.Google Scholar
  212. Larsen, M.F., R.D. Palmer, S. Fukao, R.F. Woodman, M. Yamamoto, T. Tsuda, and S. Kato. 1992. An analysis technique for deriving vector winds and in-beam incidence angles from radar interferometer measurements. Journal of Atmospheric and Oceanic Technology 9: 3–14.Google Scholar
  213. Law, D.C., K.P. Moran, R.G. Frehlich, and R.G. Strauch. 1994. Maximum likelihood estimation of spectral moments in the presence of clutter. In Extended abstracts of the third international symposium on tropospheric profiling: needs and technologies, August 30–September 2, Hamburg, Germany, 216–218.Google Scholar
  214. Le, K.D., R.D. Palmer, B.L. Cheong, T.-Y. Yu, G. Zhang, and S.M. Torres. 2010. Reducing the effects of noise on atmospheric imaging radars using multilag correlation. Radio Science 45: 1008. doi:10.1029/2008RS003989.Google Scholar
  215. Leary, C.A., and R.A. Houze, Jr. 1979. The structure and evolution of convection in a tropical cloud cluster. Journal of the Atmospheric Sciences 36: 437–457.Google Scholar
  216. Lhermitte, R.M. 1968. Turbulent air motion as observed by Doppler radar. In 13th Conference on radar meteorology (preprints), 498–503. Boston: American Meteorological Society.Google Scholar
  217. Lhermitte, R.M. 1970. Dual-Doppler radar observations of convective storm circulation. In 14th Conference on radar meteorology (preprints), 139–144. Boston: American Meteorological Society.Google Scholar
  218. Lhermitte, R.M., and L.J. Miller. 1970. Doppler radar methodology for the observation of convective storms. In 14th Conference on radar meteorology (preprints), 133–138. Boston: American Meteorological Society.Google Scholar
  219. Liebe, H.J. 1985. An updated model for millimeter wave propagation in moist air. Radio Science 20: 1069–1089.Google Scholar
  220. Lilly, D.K., D.E. Waco, and S.I. Adelfang. 1974. Stratospheric mixing estimated from high-latitude turbulence measurements. Journal of Applied Meteorology 13: 488–493.Google Scholar
  221. Lindzen, R.S. 1984. Gravity waves in the mesosphere. In Dynamics of the middle atmosphere, 3–18. Tokyo: Dordrecht Press.Google Scholar
  222. Liu, H., and V. Chandrasekar. 2000. Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. Journal of Atmospheric and Oceanic Technology 17: 140–164.Google Scholar
  223. Liu, C.H., J. Röttger, G. Dester, S.J. Franke, and C.-J. Pan. 1991. The oblique spaced antenna method for measuring the atmospheric wind field. Journal of Atmospheric and Oceanic Technology 8: 247–258.Google Scholar
  224. Liu, S., Q. Xu, and P. Zhang. 2005. Identifying Doppler velocity contamination caused by mitigating birds, Part II: Bays identification and probability tests. Journal of Atmospheric and Oceanic Technology 22: 1114–1121.Google Scholar
  225. Lopez-Dekker, P.L., and S.J. Frasier. 2004. Radio acoustic sounding with a UHF volume imaging radar. Journal of Atmospheric and Oceanic Technology 21: 766–776.Google Scholar
  226. Lott, F., and H. Teitelbaum. 1993. Topographic waves generated by a transient wind. Journal of the Atmospheric Sciences 50: 2607–2654.Google Scholar
  227. Luce, H., M. Crochet, F. Dalaudier, and C. Sidi. 1995. Interpretation of VHF ST radar vertical echoes from in-situ temperature sheet observations. Radio Science 30: 1002–1025.Google Scholar
  228. Luce, H., S. Fukao, and M. Yamamoto. 2001a. Validation of winds measured by MU radar with GPS radiosondes during the MUTSI campaign. Journal of Atmospheric and Oceanic Technology 18: 817–829.Google Scholar
  229. Luce, H., M. Yamamoto, S. Fukao, and M. Crochet. 2001b. Extended radar observations with the frequency radar domain interferometric imaging (FII) technique. Journal of Atmospheric and Solar-Terrestrial Physics 63: 221–234.Google Scholar
  230. Luce, H., S. Fukao, F. Dalaudier, and M. Crochet. 2002. Strong mixing events observed near the tropopause with the MU radar and high-resolution balloon techniques. Journal of the Atmospheric Sciences 59: 2885–2896.Google Scholar
  231. Luce, H., G. Hassenpflug, M. Yamamoto, and S. Fukao. 2007. Comparisons of refractive index gradient and stability profiles measured by balloons and the MU radar at a high vertical resolution in the lower stratosphere. Annales Geophysicae 25: 47–57.Google Scholar
  232. Luce, H., G. Hassenpflug, M. Yamamoto, S. Fukao, and K. Sato. 2008. High-resolution observations with MU radar of a KH instability triggered by an inertia-gravity wave in the upper part of a jet-stream. Journal of the Atmospheric Sciences 65: 1711–1718.Google Scholar
  233. Lyons, R.G. 2004. Understanding Digital Signal Processing, 665 pp. 2nd ed. Boston: Prentice Hall.Google Scholar
  234. Maeda, K., H. Alvarez, J. Aparici, J. May, and P. Reich. 1999. A 45-MHz continuum survey of the northern hemisphere. Astronomy and Astrophysics Supplement Series 140: 145–154.Google Scholar
  235. Maekawa, Y., S. Fukao, T. Sato, S. Kato, and R.F. Woodman. 1984. Internal inertia-gravity waves in the tropical lower stratosphere observed by the Arecibo radar. Journal of the Atmospheric Sciences 41: 2359–2367.Google Scholar
  236. Maguire, W.B., and S.K. Avery. 1995. Retrieval of raindrop size distributions using two Doppler wind profilers: model sensitivity testing. Journal of Applied Meteorology 33: 1623–1635.Google Scholar
  237. Mahapatra, P.R. 1999. Aviation weather surveillance systems, 453 pp. Reston: AIAA.Google Scholar
  238. Maki, M., S.G. Park, and V.N. Bringi. 2005. Effect of natural variations in rain drop size distributions on rain rate estimation of 3 cm wavelength polarimetric radar. Journal of the Meteorological Society of Japan 83: 871–893.Google Scholar
  239. Manzini, E., and K. Hamilton. 1993. Middle atmospheric travelling waves forced by latent and convective heating. Journal of the Atmospheric Sciences 50: 2180–2200.Google Scholar
  240. Marcuvitz, N. 1965. Waveguide handbook, 428 pp. New York: Dover Publications.Google Scholar
  241. Marks, F.D., Jr., and R.A. Houze, Jr. 1987. Inner-core structure of Hurricane Alicia from airborne Doppler-radar observations. Journal of the Atmospheric Sciences 44: 1296–1317.Google Scholar
  242. Marshall, J.S., and W.M. Palmer. 1948. The distribution of raindrops with size. Journal of Meteorology 5: 165–166.Google Scholar
  243. Marshall, J.S., W. Hitschfeld, and K.L.S. Gunn. 1955. Advances in radar weather. Advances in Geophysics 2: 1–56.Google Scholar
  244. Marshall, J.M., A.M. Peterson, and A.A. Barnes, Jr. 1972. Combined radar-acoustic sounding system. Applied Optics 11: 108–112.Google Scholar
  245. Masuda, Y. 1988. Influence of wind and temperature on the height limit of a radio acoustic sounding system. Radio Science 23: 647–654.Google Scholar
  246. Masuda, Y., J. Awaka, K. Nakamura, T. Adachi, and T. Tsuda. 1992. Analysis of the radio sounding system using a chirped acoustic wave. Radio Science 27: 681–691.Google Scholar
  247. Matrosov, S.Y., K.A. Clark, and B.E. Martner. 2002. X-band polarimetric radar measurements of rainfall. Journal of Applied Meteorology 41: 941–952.Google Scholar
  248. Matson, R.J., and A.W. Huggins. 1980. The direct measurement of the size, shapes and kinematics of falling hailstones. Journal of the Atmospheric Sciences 37: 1107–1125.Google Scholar
  249. Matuura, N., Y. Masuda, H. Inuki, S. Kato, S. Fukao, T. Sato, and T. Tsuda. 1986. Radio acoustic measurement of temperature profile in the troposphere and stratosphere. Nature 323: 426–428.Google Scholar
  250. May, P.T., and T.D. Keenan. 2005. Evaluation of microphysical retrievals from polarimetric radar with wind profiler data. Journal of Applied Meteorology 44: 827–838.Google Scholar
  251. May, P.T., S. Fukao, P.J. Neiman, M.W. Kozleski, M.D. Yamanaka, S. Kato, M. Yamamoto, T. Sato, and T. Tsuda. 1992. MU radar observations of the wind field in the vicinity of the Baiu front during early July, 1987. Beitraege zur Physik der Atmosphaere (Contributions To Atmospheric Physics) 65: 3–11.Google Scholar
  252. May, P.T., G.T. Holland, and W.L. Ecklund. 1994. Wind profiler observation of tropical storm Flo at Saipan. Weather and Forecasting 9: 410–426.Google Scholar
  253. McCarthy, J., and J.W. Wilson. 1985. The Classify, Locate, and Avoid Wind Shear (CLAWS) project at Denver’s Stapleton International Airport: Operational testing of terminal weather hazard warnings with an emphasis on microburst wind shear. In Second international conference on the aviation weather system, Montreal, 247–256. Boston: American Meteorological Society.Google Scholar
  254. McCarthy, J., W. Frost, B. Terkel, R.J. Doviak, D.W. Camp, E.F. Blick, and K.L. Elmore. 1980. An airport wind shear detection and warning system using Doppler radar. In 19th Conference on radar meteorology (preprints), Miami, FL, 135–142. Boston: American Meteorological Society.Google Scholar
  255. McKinley, D.W.R. 1961. Meteo science and engineering, 309 pp. New York: McGraw-Hill.Google Scholar
  256. Mead, J.B., G. Hopcraft, S.J. Frasier, B.D. Pollard, C.D. Cherry, D.H. Schaubert, and R.E. McIntoch. 1998. A volume-imaging radar wind profiler for atmospheric boundary layer turbulence studies. Journal of Atmospheric and Oceanic Technology 15: 849–859.Google Scholar
  257. Melnikov, V.M. 2006. One-lag estimators for cross-polarization measurements. Journal of Atmospheric and Oceanic Technology 23: 915–926.Google Scholar
  258. Melnikov, V.M., R.J. Doviak, D.S. Zrnić, and D.J. Stensrud. 2011. Mapping Bragg scatter with a polarimetric WSR-88D. Journal of Atmospheric and Oceanic Technology 28: 1273–1285.Google Scholar
  259. Meymaris, G. 2007. The use of spectral processing to improve radar spectral moment. In 23rd Conference on interactive information and processing systems for meteorology, oceanography, and hydrology (preprints), San Antonio, TX. Boston: American Meteorological Society, 8A.4.Google Scholar
  260. Michelson, M., W.W. Shrader, and J.G. Wieler. 1990. Terminal Doppler weather radar. Microwave Journal 33: 139–148.Google Scholar
  261. Miyashita, H., H. Ohmine, K. Nishizawa, S. Makino, and S. Urasaki. 1999. Electromagnetically coupled coaxial dipole array antenna. IEEE Transactions on Antennas and Propagation 47: 1716–1726.Google Scholar
  262. Moran, K.P., E.B. Martner, M.J. Post, R.A. Kropfli, D.C. Welsh, and K.B. Widener. 1998. An unattended cloud-profiling radar for use in climate research. Bulletin of the American Meteorological Society 79: 443–455.Google Scholar
  263. Mori, S., J.-I. Hamada, M.D. Yamanaka, Y.-M. Kodama, M. Kawashima, T. Shimomai, Y. Shibagaki, H. Hashiguchi and T. Sribimawati. 2006. Vertical wind characteristics in precipitating cloud systems over West Sumatera, Indonesia, observed with Equatorial Atmosphere Radar: Case Study of 23–24 April 2004 during the first CPEA campaign period. Journal of the Meteorological Society of Japan 84: 113–131.Google Scholar
  264. Muraoka, Y., K. Kawahira, T. Sato, T. Tsuda, S. Fukao, and S. Kato. 1987. Characteristics of inertial gravity waves in the mesosphere observed by the MU radar. Geophysical Research Letters 14: 1154–1157.Google Scholar
  265. Murayama, Y., T. Tsuda, and S. Kato. 1994. Seasonal variation of gravity wave activity in the lower atmosphere observed with the MU radar. Journal of Geophysical Research 99: 23057–23069.Google Scholar
  266. Muschinski, A., and C. Wode. 1998. First in situ evidence for coexisting submeter temperature and humidity sheets in the lower free troposphere. Journal of the Atmospheric Sciences 55: 2893–2906.Google Scholar
  267. Nakamura, K., and Y. Masuda. 1992. Development of a lower troposphere wind profiler at Communications Research Laboratory. In International symposium on middle atmosphere science (preprints), Kyoto, 23–37 March, 48–49.Google Scholar
  268. Nastrom, G.D., and D.C. Fritts. 1992. Sources of mesoscale variability of gravity waves, Part 1: Topographic excitation. Journal of the Atmospheric Sciences 49: 101–110.Google Scholar
  269. Nathanson, F.E. 1991. Radar design principles, 720 pp. 2nd ed. Mendham: SciTech.Google Scholar
  270. Nathanson, F.E., and J.P. Reilly. 1968. Radar precipitation echoes. IEEE Transactions on Aerospace and Electronic Systems AES-4: 505–514.Google Scholar
  271. Nathanson, F.E., and P.L. Smith. 1972. A modified coefficient for the weather radar equation. In 15th Conference radar meteorology (preprints), 228–230. Boston: American Meteorological Society.Google Scholar
  272. Nelson, S.P., and R.A. Brown. 1987. Error sources and accuracy of vertical velocities computed from multiple-Doppler radar measurements in deep convective storms. Journal of Atmospheric and Oceanic Technology 4: 234–238.Google Scholar
  273. Nickel, U. 1988. Algebraic formulation of Kumaresan-Tuffs superresolution method, showing relation to ME and MUSIC method. IEE Proceedings 135: 7–10.Google Scholar
  274. Nishi, N., M.K. Yamamoto, T. Shimomai, A. Hamada, and S. Fukao. 2007. Fine structure of vertical motion in the stratiform precipitation region observed by a VHF Doppler radar installed in Sumatra, Indonesia. Journal of Applied Meteorology and Climatology 46: 522–537.Google Scholar
  275. Ochs, G.R. 1965. The large 50 Mc/s dipole array at Jicamarca Radar Observatory. NBS Rep., 8772, 61 pp. National Bureau of Standards, Boulder, CO.Google Scholar
  276. Ogawa, T., and T. Shimazaki. 1975. Diurnal variations of odd nitrogen and ionic densities in the mesosphere and lower thermosphere: Simultaneous solution of photochemical-diffusive equations. Journal of Geophysical Research 80: 3945–3960.Google Scholar
  277. Oguchi, T. 1983. Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proceedings of the IEEE 71: 1029–1078.Google Scholar
  278. Ogura, H. 1998. Introduction to stochastic process, 212 pp. Tokyo: Morikita-Suppan (in Japanese).Google Scholar
  279. Ogura, Y., and N.A. Phillips. 1962. Scale analysis of deep and shallow convection in the atmosphere. Journal of the Atmospheric Sciences 19: 1458–1476.Google Scholar
  280. Ogura, H., and Y. Yoshida. 1981. Spectral analysis and subtraction of noise in radar signals. IEEE Transactions on Aerospace and Electronic Systems AES-17: 62–71.Google Scholar
  281. Orlansky, I. 1975. A rational subdivision of scales for atmospheric processes. Bulletin of the American Meteorological Society 56: 527–530.Google Scholar
  282. O’Sullivan, D., and T.J. Dunkerton. 1995. Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability. Journal of the Atmospheric Sciences 52: 3695–3716.Google Scholar
  283. Ottersten, H. 1969a. Atmospheric structure and radar backscattering in clear air. Radio Science 4: 1179–1193.Google Scholar
  284. Ottersten, H. 1969b. Radar backscattering from the turbulent clear atmosphere. Radio Science 4: 1251–1255.Google Scholar
  285. Ottersten, H. 1969c. Mean vertical gradient of potential refractive index in turbulent mixing and radar detection of CAT. Radio Science 4: 1247–1249.Google Scholar
  286. Palmer, R.D., R.F. Woodman, S. Fukao, T. Tsuda, and S. Kato. 1990. Three-antenna poststatistic steering using the MU radar. Radio Science 25: 1105–1110.Google Scholar
  287. Palmer, R.D., S. Fukao, M.F. Larsen, R.F. Woodman, M. Yamamoto, T. Tsuda, and S. Kato. 1991. VHF radar interferometry measurements of vertical velocity and the effects of tilted refractivity surfaces on standard Doppler measurements. Radio Science 26: 417–427.Google Scholar
  288. Palmer, R.D., M.F. Larsen, E.L. Sheppard, S. Fukao, M. Yamamoto, T. Tsuda, and S. Kato. 1993. Poststatistic steering wind estimation in the troposphere and lower stratosphere. Radio Science 28: 261–271.Google Scholar
  289. Palmer, R.D., S. Gopalam, T.Y. Yu, and S. Fukao. 1998. Coherent radar imaging using the Capon’s method. Radio Science 33: 1585–1598.Google Scholar
  290. Palmer, R.D., T.Y. Yu, and P.B. Chilson. 1999. Range imaging using frequency diversity. Radio Science 34: 1485–1496.Google Scholar
  291. Palmer, R.D., B.L. Cheong, M.W. Hoffman, S.J. Frasier, and F.J. López-Dekker. 2005. Observations of the small-scale variability of precipitation using an imaging radar. Journal of Atmospheric and Oceanic Technology 22: 1122–1137.Google Scholar
  292. Papoulis, A. 1991. Provability, random variables, and stochastic processes, 666 pp. 3rd ed. Boston: WCB/McGraw-Hill.Google Scholar
  293. Park, S.-G., V.N. Bringi, V. Chandrasekar, M. Maki, and K. Iwanami. 2005a. Correction of radar reflectivity and differential reflectivity for rain attenuation at X band, Part I: Technical and empirical basis. Journal of Atmospheric and Oceanic Technology 22: 1621–1632.Google Scholar
  294. Park, S.-G., M. Maki, K. Iwanami, V.N. Bringi, and V. Chandrasekar. 2005b. Correction of radar reflectivity and differential reflectivity for rain attenuation at X band, Part II: Evaluation and application. Journal of Atmospheric and Oceanic Technology 22: 1633–1655.Google Scholar
  295. Park, H., A.V. Ryzhkov, D.S. Zrnić, and K.E. Kim. 2009. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Weather and Forecasting 24: 730–748.Google Scholar
  296. Pasqualucci, F. 1984. Drop size distribution measurements in convective storms with a vertically pointing 35-GHz Doppler radar. Radio Science 19: 177–183.Google Scholar
  297. Pekour, M.S., and R.L. Coulter. 1999. A technique for removing the effect of migrating birds in 915-MHz wind profiler data. Journal of Atmospheric and Oceanic Technology 16: 1941–1948.Google Scholar
  298. Pfeifer, M., G. C. Craig, M. Hagen, and C. Keil. 2008. A polarimetric radar forward operator for model evaluation. Journal of Applied Meteorology and Climatology 47: 3202–3220.Google Scholar
  299. Pfister, L., K.R. Chan, T.P. Bui, S. Bowen, M. Legg, B. Gary, K. Kelly, M. Proffitt, and W. Starr. 1993. Gravity waves generated by a tropical cyclone during the STEP tropical field program: A case study. Journal of Geophysical Research 98: 8611–8638.Google Scholar
  300. Prichard, I.T., L. Thomas, and R.M. Worthington. 1995. The characteristics of mountain waves observed by radar near the west coast of Wales. Annales Geophysicae 13: 757–767.Google Scholar
  301. Probert-Jones, J.R. 1962. The radar equation in meteorology. Quarterly Journal of the Royal Meteorological Society 88: 485–495.Google Scholar
  302. Protat, A., and I. Zawadzki. 1999. A variational method for real-time retrieval of three-dimensional wind multiple-Doppler bistatic radar network data. Journal of Atmospheric and Oceanic Technology 16: 432–449.Google Scholar
  303. Pruppacher, H.R., and K.V. Beard. 1970. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quarterly Journal of the Royal Meteorological Society 96: 247–256.Google Scholar
  304. Ramo, S., J.R. Whinnery, and T. Van Duzer. 1965. Fields and waves in communication electronics, 265 pp. New York: Wiley.Google Scholar
  305. Rao, P.B., A.R. Jain, P. Kishore, P. Balamuralidhar, S.H. Damle, and G. Viswanathan. 1995. Indian MST radar, 1. System description and sample vector wind measurements in ST mode. Radio Science 30: 1125–1138.Google Scholar
  306. Rao, Q., H. Hashiguchi, and S. Fukao. 2003. Study on ground clutter prevention fences for boundary layer radars. Radio Science 38: 1030. doi:10.1029/2001RS002489.Google Scholar
  307. Ratcliffe, J.A. 1956. Some aspects of diffraction theory and their application to the ionosphere. Reports on Progress in Physics 19: 188–267.Google Scholar
  308. Ray, P.S., R.J. Doviak, G.B. Walker, D. Sirmans, J. Carter, and B. Bumgarner. 1975. Dual-Doppler observation of tornadic storm. Journal of Applied Meteorology 17: 1201–1212.Google Scholar
  309. Ray, P.S., C.L. Zeigler, R.J. Serafin, and W. Bumgarner. 1980. Single- and multiple-Doppler radar observations of tornadic storms. Monthly Weather Review 108: 1607–1625.Google Scholar
  310. Reid, I.M., and R.A. Vincent. 1987. Measurements of mesospheric gravity wave momentum fluxes and mean flow acceleration at Adelaide, Australia. Journal of Atmospheric and Terrestrial Physics 49: 443–460.Google Scholar
  311. Renggono, F., H. Hashiguchi, S. Fukao, M.D. Yamanaka, S.-Y. Ogino, N. Okamoto, F. Murata, B.P. Sitorus, M. Kudsy, M. Kartasasmita, and G. Ibrahim. 2001. Precipitating clouds observed by 1.3-GHz boundary layer radars in equatorial Indonesia. Annales Geophysicae 19: 889–897.Google Scholar
  312. Renggono, F., M.K. Yamamoto, H. Hashiguchi, S. Fukao, T. Shimomai, M. Kawashima, and M. Kudsy. 2006. Raindrop size distribution observed with the Equatorial Atmosphere Radar (EAR) during the CPEA-I observation campaign. Radio Science 41: RS5002. doi:10.1029/2005RS003333.Google Scholar
  313. Rodi, A.R., K.L. Elmore, and W.P. Mahoney. 1983. Aircraft and Doppler air motion comparisons in a JAWS microburst. 21st Conference on Radar Meteorology (preprints), Edmonton, 624–629. Boston: American Meteorological Society.Google Scholar
  314. Röttger, J. 1979. VHF radar observations of a frontal passage. Journal of Applied Meteorology 18: 85–91.Google Scholar
  315. Röttger, J. 1980a. Reflection and scattering of VHF radar signals from atmospheric refractivity structures. Radio Science 15: 259–276.Google Scholar
  316. Röttger, J. 1980b. Structure and dynamics of the stratosphere and mesosphere revealed by VHF radar investigations. Pure and Applied Geophysics 118: 494–527.Google Scholar
  317. Röttger, J. 1981. Investigations of lower and middle atmosphere dynamics with spaced antenna drifts radars. Journal of Atmospheric and Terrestrial Physics 43: 277–292.Google Scholar
  318. Röttger, J., and H.M. Ierkic. 1985. Postbeam steering and interferometry applications of VHF radars to study winds, waves, and turbulence in the lower and middle atmosphere. Radio Science 20: 1461–1480.Google Scholar
  319. Röttger, J., and M.F. Larsen. 1990. UHF/VHF radar techniques for atmospheric research and wind profiler applications.In Radar in meteorology, ed. D. Atlas, 235–281. Boston: American Meteorological Society.Google Scholar
  320. Röttger, J., and C.H. Liu. 1978. Partial reflection and scattering of VHF radar signals from the clear atmosphere. Geophysical Research Letters 5: 357–360.Google Scholar
  321. Röttger, J., and R.A. Vincent. 1978. VHF radar studies of tropospheric velocities and irregularities using spaced antenna techniques. Geophysical Research Letters 5: 917–920.Google Scholar
  322. Röttger, J., J. Klostermeyer, P. Czechowsky, R. Rüster, and G. Schmidt. 1978. Remote sensing of the atmosphere by VHF radar experiment. Naturwissenschaften 65: 285–296.Google Scholar
  323. Röttger, J., C.-H. Liu, J.K. Chao, A.J. Chen, Y.H. Chu, I.-J. Fu, C.M. Huang, Y.W. Kiang, F.S. Kuo, and C.J. Pan. 1990a. The Chung-Li VHF radar: Technical layout and a summary of initial results. Radio Science 25: 478–502.Google Scholar
  324. Röttger, J., C.-H. Liu, C.J. Pan, and I.-J. Fu. 1990b. Spatial interferometry measurements with the Chung-Li VHF radar. Radio Science 25: 503–515.Google Scholar
  325. Ryde, J.W. 1946. The attenuation and radar echoes produced at centimetre wavelengths by various meteorological phenomena. In Meteorological factors in radio wave propagation, 169–188. London: Physical Society.Google Scholar
  326. Ryzhkov, A.V., and D.S. Zrnić. 1998. Polarimetric rainfall estimation in the presence of anomalous propagation. Journal of Atmospheric and Oceanic Technology 15: 1320–1330.Google Scholar
  327. Ryzhkov, A.V., S.E. Giangrande, and T.J. Schuur. 2005. Rainfall estimation with a polarimetric prototype of WSR-88D. Journal of Applied Meteorology 44: 502–515.Google Scholar
  328. Saad, Y. 2003. Iterative methods for space linear systems, 528 pp. Philadelphia: Siam.Google Scholar
  329. Sachindananda, M., and D.S. Zrnić. 1985. Z DR measurement considerations for a fast scan capability radar. Radio Science 20: 907–922.Google Scholar
  330. Sachidananda, M., and D.S. Zrnić. 1986. Recovery of spectral moments from overlaid echoes in a Doppler weather radar. IEEE Transactions on Geoscience and Remote Sensing 24: 751–764.Google Scholar
  331. Sachidananda, M., and D.S. Zrnić. 1999. Systematic phase codes for resolving range overlaid signals in a Doppler weather radar. Journal of Atmospheric and Oceanic Technology 16: 1351–1363.Google Scholar
  332. Sakakibara, H., M. Ishihara, A. Tabata, K. Akaeda, and T. Yokoyama. 1991. Evolution and structure of a cold-frontal precipitation system over the subtropical ocean. In International conference on mesoscale meteorology and TAMEX (preprints), Taipei, R. O. C., 173–181. Boston: American Meteorological Society.Google Scholar
  333. Sasaoka, M. 2003. Improvement of wind boundary layer radar using a grouping algorithm. Tenki, Journal of the Meteorological Society 50: 161–174 (in Japanese).Google Scholar
  334. Sato, K. 1989. An inertia gravity wave associated with a synoptic-scale pressure trough observed by the MU radar. Journal of the Meteorological Society of Japan 67: 325–333.Google Scholar
  335. Sato, K. 1990. Vertical wind disturbances in the troposphere and lower stratosphere observed by the MU radar. Journal of the Atmospheric Sciences 47: 2803–2817.Google Scholar
  336. Sato, K. 1993. Small-scale wind disturbances observed by the MU radar during the passage of Typhoon Kelly. Journal of the Atmospheric Sciences 50: 519–537.Google Scholar
  337. Sato, T. 1988. Radar principles. In Lecture notes of International School on Atmospheric Radar (ISAR), ed. S. Fukao, 19–53. Kyoto: Kyoto University.Google Scholar
  338. Sato, T., and R.F. Woodman. 1982. Spectral parameter estimation of CAT radar echoes in the presence of fading clutter. Radio Science 17: 817–826.Google Scholar
  339. Sato, K., H. Hashiguchi, and S. Fukao. 1995. Gravity waves and turbulence associated with cumulus convection observed with the UHF/VHF clear-air Doppler radars. Journal of Geophysical Research 100: 7111–7119.Google Scholar
  340. Sato, K., M. Tsutsumi, T. Sato, A. Saito, Y. Tomikawa, T. Aso, T. Yamauchi, and M. Ejiri. 2006. Program of the Antarctic Syowa MST/IS radar (Pansy). European Geosciences Union 8: 1607-796/gra/EGU06-A-05594.Google Scholar
  341. Sato, T., H. Iwai, I. Kimura, S. Fukao, M. Yamamoto, T. Tsuda, and S. Kato. 1990. Computer processing for deriving drop-size distributions and vertical air velocities from VHF Doppler radar spectra. Radio Science 25: 961–973.Google Scholar
  342. Sato, T., N. Ao, M. Yamamoto, S. Fukao, T. Tsuda, and S. Kato. 1991. A typhoon observed with the MU Radar. Monthly Weather Review 119: 755–768.Google Scholar
  343. Satoh, S., and J. Wurman. 2003. Accuracy of wind fields observed by a bistatic Doppler radar network. Journal of Atmospheric and Oceanic Technology 20: 1077–1091.Google Scholar
  344. Sauvageot, H. 1992. Radar meteorology, 366 pp. Boston: Artech House.Google Scholar
  345. Schmidt, R.O. 1986. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation AP-34: 276–280.Google Scholar
  346. Sekhon, R.S., and R.C. Srivastava. 1970. Snow-size spectra and radar reflectivity. Journal of the Atmospheric Sciences 27: 299–307.Google Scholar
  347. Sekhon, R.S., and R.C. Srivastava. 1971. Doppler radar observations of drop-size distributions in a thunderstorm. Journal of the Atmospheric Sciences 28: 983–994.Google Scholar
  348. Seliga, T.A., and V.N. Bringi. 1976. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitations. Journal of Applied Meteorology 15: 69–76.Google Scholar
  349. Sempre-Torres D., J.M. Porra, and J.D. Creutin. 1994. A general formulation for raindrop size distribution. Journal of Applied Meteorology 33: 1494–1502.Google Scholar
  350. Shibagaki, Y., M.D. Yamanaka, H. Hashiguchi, A. Watanabe, H. Uyeda, Y. Maekawa, and S. Fukao. 1997. Hierarchical structures of vertical velocity variations and precipitating clouds near the Baiu frontal cyclone center observed by the MU and meteorological radars. Journal of the Meteorological Society of Japan 75: 569–596.Google Scholar
  351. Shibagaki, Y., M.D. Yamanaka, S. Shimizu, H. Uyeda, A. Watanabe, Y. Maekawa, and S. Fukao. 2000. Meso-β to -γ-scale wind circulations associated with precipitating clouds near Baiu front observed by the MU and meteorological radars. Journal of the Meteorological Society of Japan 78: 69–91.Google Scholar
  352. Shibagaki, Y., M.D. Yamanaka, M. Kita-Fukase, H. Hashiguchi, Y. Maekawa, and S. Fukao. 2003. Meso-α-scale wind field and precipitating clouds in Typhoon 9426 (Orchid) observed by the MU radar. Journal of the Meteorological Society of Japan 81: 211–228.Google Scholar
  353. Shusse, Y., K. Nakagawa, N. Takahashi, S. Satoh, and T. Iguchi. 2009. Characteristics of polarimetric radar variables in three types of rainfalls in a baiu front event over the East China Sea. Journal of the Meteorological Society of Japan 87: 865–875.Google Scholar
  354. Siggia, A. 1983. Processing phase codes radar signals with adaptive digital filters. In 21st International conference on radar meteorology (preprints), Edmonton, AB, Canada, 167–172. Boston: American Meteorological Society.Google Scholar
  355. Siggia, A.D., and R.E. Passarelli, Jr. 2004. Gaussian model adaptive processor (GMAP) for improved ground clutter cancellation and moment calculation. In Proceedings. Third European Conference on Radar Meteorology (ERAD), Visby, Island of Gotland, Sweden, 67–73.Google Scholar
  356. Silver, S. 1949. Microwave antenna theory and design, 623 pp. New York: McGraw-Hill.Google Scholar
  357. Silverman, R.A. 1956. Turbulent mixing theory applied to radio scattering. Journal of Applied Physics 27: 690–705.Google Scholar
  358. Skolnik, M.I. ed. 1970. Radar handbook, 1536 pp. New York: McGraw-Hill.Google Scholar
  359. Skolnik, M.I. ed. 1981. Introduction to radar systems, 581 pp. 2nd ed. New York: McGraw-Hill.Google Scholar
  360. Skolnik, M.I. ed. 1990. Radar handbook, 1200 pp. 2nd ed. New York: McGraw-Hill.Google Scholar
  361. Skolnik, M.I. ed. 2001. Introduction to radar systems, 772 pp. 3rd ed. New York: McGraw-Hill.Google Scholar
  362. Smith, P.L. 1984. Equivalent radar reflectivity factor for snow and ice particles. Journal of Climate and Applied Meteorology 23: 1258–1260.Google Scholar
  363. Smith, P.L. 1986. On the sensitivity of weather radar. Journal of Atmospheric and Oceanic Technology 3: 704–713.Google Scholar
  364. Smith, S.A., D.C. Fritts, and T.E. VanZandt. 1987. Evidence of a saturation spectrum of atmospheric waves. Journal of the Atmospheric Sciences 44: 1404–1410.Google Scholar
  365. Spano, E., and O. Ghebrebrhan. 1996a. Pulse coding techniques for ST/MST radar systems: A general approach based on a matrix formulation. IEEE Transactions on Geoscience and Remote Sensing GE-34: 304–316.Google Scholar
  366. Spano, E., and O. Ghebrebrhan. 1996b. Sequences of complementary codes for the optimum decoding of truncated ranges and high sidelobe suppression factors for ST/MST radar systems. IEEE Transactions on Geoscience and Remote Sensing GE-34: 330–345.Google Scholar
  367. Srivastava, R.C. 1967. On the role of coalescene between raindrops in shaping their size distribution. Journal of the Atmospheric Sciences 24: 287–292.Google Scholar
  368. Srivastava, R.C. 1971. Size distribution of raindrops generated by their breakup and coalescence. Journal of the Atmospheric Sciences 28: 410–415.Google Scholar
  369. Srivastava, R.C., A. R. Jameson, and P. H. Hildebrand. 1979. Time-domain computation of mean and variance of Doppler spectra. Journal of Applied Meteorology 18: 189–194.Google Scholar
  370. Straka, J.M., D. Zrnić, A.V. Ryzhkov. 2000. Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. Journal of Applied Meteorology 39: 1341–1372.Google Scholar
  371. Stratton, J.A. 2007. Electromagnetic theory, 615 pp. Piscataway: IEEE Press.Google Scholar
  372. Stutzman, W.L. 1998. Estimating directivity and gain of antennas. IEEE Antennas and Propagation Magazine 40: 7–11.Google Scholar
  373. Sumi, A. 1989. Short-period fluctuation of the lower tropospheric winds observed by the MU radar. Journal of the Meteorological Society of Japan 67: 167–175.Google Scholar
  374. Tabata, A., H. Sakakibara, M. Ishihara, K. Matsuura, and Z. Yanagisawa. 1992. A general view of the structure of Typhoon 8514 observed by dual-Doppler radar—From outer rainbands to eyewall clouds. Journal of the Meteorological Society of Japan 70: 897–917.Google Scholar
  375. Takeda, S., T. Nakamura, and T. Tsuda. 2001. An improvement of wind velocity estimation from radar Doppler spectra in the upper mesosphere. Annales Geophysicae 19: 837–843.Google Scholar
  376. Tatarskii, V.I. 1971. The effects of the turbulent atmosphere on wave propagation, 472 pp. Translated from Russian, Jerusalem.Google Scholar
  377. Teschl, T., W.L. Randeu, M. Schönhuber, and R. Teschl. 2008. Simulation of polarimetric radar variables in rain at S-, C- and X-band wavelengths. Advances in Geosciences 16: 27–32Google Scholar
  378. Teshiba, M., H. Hashiguchi, S. Fukao, and Y. Shibagaki. 2001. Typhoon 9707 observations with the MU radar and L-band boundary layer radar. Annales Geophysicae 19: 925–931.Google Scholar
  379. Teshiba, M., H. Fujita, H. Hashiguchi, Y. Shibagaki, M.D. Yamanaka, and S. Fukao. 2005. Detailed structure within a tropical cyclone “eye.” Geophysical Research Letters 32: L24805. doi:10.1029/2005GL023242.Google Scholar
  380. Testud, J. 1982. Three-dimensional wind field analysis from Doppler radar data. In Mesoscale meteorology—theories, observations and models, eds. D.L. Lilly, and T. Gal-Chen, 711–754. Dordrecht: D. Reidel Publishing.Google Scholar
  381. Torlaschi, E., and A.R. Holt. 1993. Separation of propagation and backscattering effects in rain for circular polarization diversity S-band radar. Journal of Atmospheric and Oceanic Technology 10: 465–477.Google Scholar
  382. Townsend, A.A. 1965. Excitation of internal waves by a turbulent boundary layer. Journal of Fluid Mechanics 22: 241–252.Google Scholar
  383. Townsend, A.A. 1966. Internal waves produced by a convective layer. Journal of Fluid Mechanics 24: 307–319.Google Scholar
  384. Tsuda, T. 2001. Measurements of atmospheric temperature with the RASS. Choonpa Techno 13: 18–22 (in Japanese).Google Scholar
  385. Tsuda, T., T. Sato, K. Hirose, S. Fukao, and S. Kato. 1986. MU radar observations of the aspect sensitivity of backscattered VHF echo power in the troposphere and lower stratosphere. Radio Science 21: 971–980.Google Scholar
  386. Tsuda, T., Y. Masuda, H. Inuki, K. Takahashi, T. Takami, T. Sato, S. Fukao, and S. Kato. 1989a. High time resolution monitoring of tropospheric temperature with a Radio Acoustic Sounding System (RASS). Pure and Applied Geophysics 130: 497–507.Google Scholar
  387. Tsuda, T., T. Inoue, D.C. Fritts, T.E. VanZandt, S. Kato, T. Sato, and S. Fukao. 1989b. MST radar observations of a saturated gravity wave spectrum. Journal of the Atmospheric Sciences 46: 2440–2447.Google Scholar
  388. Tsuda, T., S. Kato, T. Yokoi, T. Inoue, M. Yamamoto, T.E. VanZandt, S. Fukao, and T. Sato. 1990a. Gravity waves in the mesosphere observed with the middle and upper atmosphere radar. Radio Science 26: 1005–1018.Google Scholar
  389. Tsuda, T., Y. Murayama, M. Yamamoto, S. Kato, and S. Fukao. 1990b. Seasonal variation of momentum flux in the mesosphere observed with the MU radar. Geophysical Research Letters 17: 725–728.Google Scholar
  390. Tsuda, T., T. Adachi, Y. Masuda, S. Fukao, and S. Kato. 1994. Observations of tropospheric temperature fluctuations with the MU radar-RASS. Journal of Atmospheric and Oceanic Technology 11: 50–62.Google Scholar
  391. Tsuda, T., T.E. VanZandt, and H. Saito. 1997. Zenith-angle dependence of VHF specular reflection echoes in the lower atmosphere. Journal of Atmospheric and Terrestrial Physics 59: 766–776.Google Scholar
  392. Tsuda, T., M. Miyamoto, and J. Furumoto. 2001. Estimation of a humidity profile using turbulence echo characteristics. Journal of Atmospheric and Oceanic Technology 18: 1214–1222.Google Scholar
  393. Tsutsumi, M., T. Tsuda, and T. Nakamura. 1994. Temperature fluctuations near the mesopause inferred from meteor observations with the middle and upper atmosphere radar. Radio Science 29: 599–610.Google Scholar
  394. Ulaby, F.T., R.K. Moore, and A.K. Fung. 1981. Microwave remote sensing I, microwave remote sensing fundamentals and radiometry, 456 pp. Norwood: Artech House.Google Scholar
  395. Ulaby, F.T., R.K. Moore, and A.K. Fung. 1986. Microwave remote sensing III, from theory to application, 2162 pp. Norwood: Artech House.Google Scholar
  396. Ulbrich, C.W. 1983. Natural variations in the analytical form of the raindrop-size distribution. Journal of Climate and Applied Meteorology 22: 1764–1775.Google Scholar
  397. Umemoto, Y., M. Teshiba, Y. Shibagaki, H. Hashiguchi, M.D. Yamanaka, S. Fukao, and X-BAIU-99 and X-BAIU-02 Observational Groups. 2004. Combined wind profiler-weather radar observations of orographic rainband around Kyushu, Japan in the Baiu season. Annales Geophysicae 22: 3971–3982.Google Scholar
  398. Ushiyama, T., M. Kawashima, and Y. Fujiyoshi. 2003. Heating distribution by cloud systems derived from Doppler radar observation in TOGA-COARE. Journal of the Meteorological Society of Japan 81: 1407–1434.Google Scholar
  399. Ushiyama, T., M. Katsumata, and R. Shiooka. 2005. Idealized simulation of dual Doppler radar observation using numerically simulated clouds. JAMSTEC Report of Research and Development 1: 37–43.Google Scholar
  400. Uyeda, H., and D.S. Zrnić. 1986. Automatic detection of gust fronts. Journal of Atmospheric and Oceanic Technology 3: 36–50.Google Scholar
  401. Van Baelen, J.S., A.D. Richmond, T. Tsuda, S.K. Avery, S. Kato, S. Fukao, and M. Yamamoto. 1991. Radar interferometry technique and anisotropy of the echo power distribution: First results. Radio Science 26: 1315–1326.Google Scholar
  402. Van de Hulst, H.D. 1957. Light scattering by small particles, 470 pp. New York: Wiley.Google Scholar
  403. Van Vleck, J.H. 1947a. Absorption of microwaves by oxygen. Physical Review 71: 413–424.Google Scholar
  404. Van Vleck, J.H. 1947b. The absorption of microwaves by uncondensed water vapor. Physical Review 71: 425–433.Google Scholar
  405. VanZandt, T.E., and R.A. Vincent. 1983. Is VHF Fresnel reflectivity due to low-frequency waves. In Handbook for MAP, vol. 9, 78–80. Urbana: ICSU Scientific Committee on Solar-Terrestrial Physics (SCOSTEP).Google Scholar
  406. Vincent, R.A., and I.M. Reid. 1983. HF Doppler measurements of mesospheric gravity wave momentum fluxes. Journal of the Atmospheric Sciences 40: 1321–1333.Google Scholar
  407. Vincent, R.A., S. Dullaway, A. MacKinnon, I.M. Reid, F. Zink, P.T. May, and B.H. Johnson. 1998. A VHF boundary layer radar: first results. Radio Science 33: 845–860.Google Scholar
  408. Vivekanandan, J., G. Zhang, and E. Brandes. 2004. Polarimetric radar estimators based on a constrained gamma drop size distribution model. Journal of Applied Meteorology 43: 217–230.Google Scholar
  409. Wada, M., and H. Uyeda. 2011. Solid-state weather radar which reached the practical use stage. In 35th Conference on radar meteorology (preprints). Pittsburgh: American Meteorological Society, p12.163.Google Scholar
  410. Wait, J.R. 1962. Electromagnetic waves in stratified media, 372 pp. Oxford: Pergamon.Google Scholar
  411. Wakasugi, K., A. Mizutani, M. Matsuo, S. Fukao, and S. Kato. 1986. A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra. Journal of Atmospheric and Oceanic Technology 3: 623–629.Google Scholar
  412. Wakimoto, R.M. 1985. Forecasting dry microburst activity over the high plains. Monthly Weather Review 113: 1131–1143.Google Scholar
  413. Waldteufel, P., and H. Corbin. 1979. On the analysis of single Doppler data. Journal of Applied Meteorology 18: 532–542.Google Scholar
  414. Wang, Y., V. Chandrasekar, and B. Dolan. 2008. Development of scan strategy for dual Doppler retrieval in a networked radar system. In IEEE international of geoscience and remote sensing symposium, 2008, vol. 5, V-322–V-325.Google Scholar
  415. Watanabe, A., S. Fukao, M.D. Yamanaka, A. Sumi, and H. Uyeda. 1994. A rotor circulation near the Baiu front observed by the MU radar. Journal of the Meteorological Society of Japan 72: 91–105.Google Scholar
  416. Weinman, J.A., R. Meneghini, and K. Nakamura. 1990. Retrieval of precipitation profiles from airborne radar and passive radiometer measurements: Comparison with dual-frequency radar measurements. Journal of Applied Meteorology 29: 981–993.Google Scholar
  417. Weinstock, J. 1978. Vertical turbulent diffusion in a stably stratified fluid. Journal of the Atmospheric Sciences 35: 1022–1027.Google Scholar
  418. Weinstock, J. 1981. Energy dissipation rates of turbulence in the stable free atmosphere. Journal of the Atmospheric Sciences 38: 880–883.Google Scholar
  419. Wexler, R. and D. Atlas. 1963. Radar reflectivity and attenuation of rain. Journal of Applied Meteorology 2: 276–280.Google Scholar
  420. Wilczak, J.M., R.G. Strauch, F.M. Ralph, B.L. Weber, D.A. Merritt, J.R. Jordan, D.E. Wolfe, L.K. Lewis, D.B. Wuertz, J.E. Gaynor, S.A. McLaughlin, R.R. Rogers, A.C. Riddle, and T.S. Dye. 1995. Contamination of wind profiler data by migrating birds: Characteristics of corrupted data and potential solutions. Journal of Atmospheric and Oceanic Technology 12: 449–467.Google Scholar
  421. Williams, C.R., W.L. Ecklund, and K.S. Gage. 1995. Classification of precipitating clouds in the tropics using 915-MHz wind profilers. Journal of Atmospheric and Oceanic Technology 12: 996–1012.Google Scholar
  422. Willis, P.T. 1984. Functional fits to some observed drop size distributions and parameterization of rain. Journal of the Atmospheric Sciences 41: 1648–1661.Google Scholar
  423. Wilson, R. 2004. Turbulent diffusivity in the free atmosphere inferred from MST radar measurements: A review. Annales Geophysicae 22, 3869–3887.Google Scholar
  424. Wolfson, M. M. 1983. Doppler radar observations of an Oklahoma downburst. In 21st Conference on radar meteorology (preprints), 590–595. Edmonton: American Meteorological Society.Google Scholar
  425. Wood, V.T., and R.A. Brown. 1983. Single Doppler velocity signatures: An atlas of patterns in clear air/widespread precipitation and convective storms. In NOAA technical memorandum ERL NSSL-95, 71 pp. Norman: NOAA Environmental Research Laboratories.Google Scholar
  426. Woodman R.F. 1980. High altitude-resolution stratospheric measurements with the Arecibo 2380-MHz radar. Radio Science 15: 423–430.Google Scholar
  427. Woodman, R.F., and A. Guillén. 1974. Radar observations of winds and turbulence in the stratosphere and mesosphere. Journal of the Atmospheric Sciences 31: 493–505.Google Scholar
  428. Worthington, R.M., R.D. Palmer, and S. Fukao. 1999. Complete maps of the aspect sensitivity of VHF atmospheric radar echoes. Annales Geophysicae 17: 1116–1119.Google Scholar
  429. Wurman, J., S. Heckman, and D. Boccipio. 1993. A bistatic multiple-Doppler radar network. Journal of Applied Meteorology 32: 1802–1814.Google Scholar
  430. Wurman, J., J. Straka, and E. Rasmussen. 1996. Fine scale Doppler radar observation of tornadoes. Science 272: 1774–1777.Google Scholar
  431. Yamada, Y. 1997. Numerical estimation of error variance in horizontal divergence for the adjustment of vertical winds derived from conical-scan-based dual-Doppler radar data based on the “floating boundary condition” concept. Papers in Meteorology and Geophysics 48: 49–65.Google Scholar
  432. Yamamoto, M., T. Tsuda, S. Kato, T. Sato, and S. Fukao. 1987. A saturated inertia gravity wave in the mesosphere observed by the middle and upper atmosphere radar. Journal of Geophysical Research 92: 11993–11999.Google Scholar
  433. Yamamoto, M., T. Tsuda, S. Kato, T. Sato, and S. Fukao, 1988. Interpretation of the structure of mesospheric turbulence layers in terms of inertia gravity waves. Physica Scripta 37: 645–650.Google Scholar
  434. Yamamoto, M., S. Fukao, R.F. Woodman, T. Ogawa, T. Tsuda, and S. Kato. 1991. Mid-latitude E-region field-aligned irregularities observed with the MU radar. Journal of Geophysical Research 96: 15943–15949.Google Scholar
  435. Yamamoto, M.K., H. Hashiguchi, S. Fukao, Y. Shibano, and K. Imai. 2002. Development of a transportable 3-GHz wind profiler for wind and precipitation studies. Journal of the Meteorological Society of Japan 80: 273–283.Google Scholar
  436. Yamamoto, M.K., M. Oyamatsu, T. Horinouchi, H. Hashiguchi, and S. Fukao. 2003a. High time resolution determination of the tropical tropopause by the equatorial atmosphere radar. Geophysical Research Letters 30: 2094. doi:10.1029/2003GL018072.Google Scholar
  437. Yamamoto, M.K., M. Fujiwara, T. Horinouchi, H. Hashiguchi, and S. Fukao. 2003b. Kelvin-Helmholtz instability around the tropical tropopause observed with the equatorial atmosphere radar. Geophysical Research Letters 30: 1476. doi:10.1029/2002GL016685.Google Scholar
  438. Yamanaka, M.D., S. Fukao, H. Matsumoto, T. Sato, T. Tsuda, and S. Kato. 1989. Internal gravity wave selection in the upper troposphere and lower stratosphere observed by the MU radar: Preliminary results. Pure and Applied Geophysics 130: 481–495.Google Scholar
  439. Yamauchi, H., O. Suzuki, and K. Akaeda. 2006. A hybrid multi-PRI method to dealias Doppler velocities. Scientific Online Letters on the Atmosphere 2: 92–95.Google Scholar
  440. Yamauchi, H., O. Suzuki, and K. Akaeda. 2007. Range extension of Doppler radar by combined use of low-PRF and phase diversity processed dual-PRF observations. In 33rd Conference on radar meteorology (preprints). Cairns: American Meteorological Society, p7.5.Google Scholar
  441. Yeh, K.C., and C.H. Liu. 1972. Theory of ionospheric waves, 464 pp. New York: Academic.Google Scholar
  442. Yoshizaki, M., and H. Seko. 1994. A retrieval of thermodynamic and microphysical variables by using wind data in simulated multi-cellular convective storms. Journal of the Meteorological Society of Japan 72: 31–42.Google Scholar
  443. Yu, T.-Y., and R.D. Palmer. 2001. Atmospheric radar imaging using multiple-receiver and multiple-frequency techniques. Radio Science 36: 1493–1503. doi:10.1029/2000RS002622.Google Scholar
  444. Yu, T.-Y., and W.O.J. Brown. 2004. High-resolution atmospheric profiling using combinated spaced antenna and range imaging techniques. Radio Science 39: 1011. doi:10.1029/ 2003RS002907.Google Scholar
  445. Yu, T.-Y., J. Furumoto, and M. Yamamoto. 2010. Clutter suppression for high-resolution atmospheric observations using multiple receivers and multiple frequencies. Radio Science 45: RS4011. doi:10.1029/2009RS004330.Google Scholar
  446. Zhang, P., S. Liu, and Q. Xu. 2005. Identifying Doppler velocity contamination caused by mitigating birds, Part I: Feature extraction and quantification. Journal of Atmospheric and Oceanic Technology 22: 1105–1113.Google Scholar
  447. Zhong, S., J.D. Fast, and X. Bian. 1996. A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Monthly Weather Review 124: 785–806.Google Scholar
  448. Ziemer, R.E., W.H. Tranter, and D.R. Fannin. 1998. Signals and systems: Continuous and discrete. 4th ed, 622 pp. New Jersey: Prentice Hall.Google Scholar
  449. Zrnić, D.S. 1979. Estimation of spectral moments for weather echoes. IEEE Transactions on Geoscience Electronics GE-17: 113–128.Google Scholar
  450. Zrnić, D.S., and P. Mahapatra. 1985. Two methods of ambiguity resolution in pulsed Doppler weather radars. IEEE Transactions on Aerospace and Electronic Systems 21: 470–483.Google Scholar
  451. Zrnić, D.S., A. Ryzhkov, J. Straka, Y. Liu, and J. Vivekanandan. 2001. Testing a procedure for automatic classification of hydrometeor types. Journal of Atmospheric and Oceanic Technology 18: 892–913.Google Scholar
  452. Zrnić, D.S., V.M. Melnikov, and J.K. Carter. 2006. Calibrating differential reflectivity on the WSR-88D. Journal of Atmospheric and Oceanic Technology 23: 892–913.Google Scholar
  453. Zrnić, D.S., V.M. Melnikov, and R.J. Doviak. 2012. A draft report on issues and challenges for polarimetric measurement of weather with an agile-beam phased array radar. http://publications.nssl.noaa.gov/mpar_reports/MPAR-WEB_RPT.pdf,132pp.

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Shoichiro Fukao
    • 1
  • Kyosuke Hamazu
    • 2
  1. 1.Kyoto UniversityKyotoJapan
  2. 2.Mitsubishi Electric Corporation and Mitsubishi Electric Tokki Systems CorporationIgaJapan

Personalised recommendations