Conclusions

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Modern nonequilibrium statistical mechanics provides derivations of the second law of thermodynamics based on the microscopic quantum dynamics of thermodynamic systems. By combining the derivations with quantum information theory, generalizations of the second law of thermodynamics have been derived for quantum information processing such as quantum measurement, quantum feedback control, and information erasure. Moreover, generalized nonequilibrium equalities such as the fluctuation theorem and the Jarzynski equality have been derived in the presence of feedback control. These results are applicable to small thermodynamic systems that can be precisely controlled by modern experimental technologies. These results are also closely related to the fundamental problem of Maxwell’s demon, which can be regarded as a feedback controller acting on thermodynamic systems.

Keywords

Maxwell’s demon Nonequilibrium statistical mechanics Quantum feedback control 

References

  1. 1.
    J. Kurchan, arXiv:cond-mat/0007360 (2000).Google Scholar
  2. 2.
    H. Tasaki, arXiv:cond-mat/0009244 (2000).Google Scholar
  3. 3.
    C. Jarzynski, D.K. Wójcik, Phys. Rev. Lett. 92, 230602 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    T. Sagawa, Second law-like inequalities with quantum relative entropy: an introduction, in Lectures on Quantum Computing, Thermodynamics and Statistical Physics. Kinki University Series on Quantum Computing (World Scientific, Singapore, 2012); e-print: arXiv:1202.0983. (To appear).Google Scholar
  5. 5.
    S. Lloyd, Phys. Rev. A 39, 5378 (1989)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    M.A. Nielsen, C.M. Caves, B. Schumacher, H. Barnum, Proc. R. Soc. Lond. A 454, 277 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 100, 080403 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    A.E. Allahverdyan, T.M. Nieuwenhuizen, Phys. Rev. E 64, 0561171 (2001)CrossRefGoogle Scholar
  9. 9.
    C. Horhammer, H. Buttner, J. Stat. Phys. 133, 1161 (2008)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    O.J.E. Maroney, Phys. Rev. E 79, 031105 (2009)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 102, 250602 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 106, 189901(E) (2011).Google Scholar
  13. 13.
    T. Sagawa, Prog. Theor. Phys. 127, 1 (2012)ADSMATHCrossRefGoogle Scholar
  14. 14.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 104, 090602 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    M. Ponmurugan, Phys. Rev. E 82, 031129 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Fujitani, H. Suzuki, J. Phys. Soc. Jpn. 79, 104003 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    J.M. Horowitz, S. Vaikuntanathan, Phys. Rev. E 82, 061120 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Nat. Phys. 6, 988 (2010)CrossRefGoogle Scholar
  19. 19.
    Y. Morikuni, H. Tasaki, J. Stat. Phys. 143, 1 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    S. Lahiri, S. Rana, A.M. Jayannavar, J. Phys. A Math. Theor. 45, 065002 (2012)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    D. Abreu, U. Seifert, Phys. Rev. Lett. 108, 030601 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    T. Sagawa, M. Ueda, Phys. Rev. E 85, 021104 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    J.C. Maxwell, Theory of Heat (Appleton, London, 1871)Google Scholar
  24. 24.
    H.S. Leff, A.F. Rex (eds.), Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Princeton University Press, Princeton, 2003)Google Scholar
  25. 25.
    K. Maruyama, F. Nori, V. Vedral, Rev. Mod. Phys. 81, 1 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    O.J.E. Maroney, Information processing and thermodynamic entropy, in The Stanford Encyclopedia of Philosophy, Fall 2009 edn., ed. by E.N. Zalta (Springer, Berlin, 2009).Google Scholar
  27. 27.
    T. Sagawa, M. Ueda, Information thermodynamics: Maxwell’s Demon in nonequilibrium dynamics, in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, ed. by R. Klages, W. Just, C. Jarzynski (Wiley-VCH, Weinheim, 2012). arXiv:1111.5769 (2011) (To appear).Google Scholar
  28. 28.
    J. von Neumann, Z. Phys. 57, 30 (1929) (Eng. Trans. in arXiv:1003.2133).Google Scholar
  29. 29.
    J.M. Deutsch, Phys. Rev. A 43, 2046 (1991)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    M. Srednicki, Phys. Rev. E 50, 888 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    H. Tasaki, Phys. Rev. Lett. 80, 1373 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    A. Sugita, RIMS Kôkyûroku, 1507, 147 (2006) (in Japanese).Google Scholar
  33. 33.
    S. Goldstein, J.L. Lebowitz1, R. Tumulka, N. Zanghi. Phys. Rev. Lett. 96, 050403 (2006)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    S. Popescu, A.J. Short, A. Winter, Nat. Phys. 2, 754 (2006)CrossRefGoogle Scholar
  35. 35.
    P. Reimann, Phys. Rev. Lett. 99, 160404 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    A. Lenard, J. Stat. Phys. 19, 575 (1978)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    W. Pusz, S.L. Woronowic, Commun. Math. Phys. 58, 273 (1978)ADSCrossRefGoogle Scholar
  39. 39.
    H. Tasaki, arXiv:cond-mat/0009206 (2000).Google Scholar
  40. 40.
    M. Campisi, Stud. Hist. Phil. Mod. Phys. 39, 181 (2008)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan

Personalised recommendations