Predator Diversity Changes the World: From Gene to Ecosystem

  • Noboru Okuda
  • Katsutoshi Watanabe
  • Kayoko Fukumori
  • Shin-ichi Nakano
  • Takefumi Nakazawa
Part of the SpringerBriefs in Biology book series (BRIEFSBIOL)


Trophic polymorphism, defined as the state in which two or more clearly different feeding functional traits exist within the same population of a species, is general in fishes. In aquatic ecosystems, the fishes often have strong impacts on prey communities as keystone predators, so that phenotypic divergence of their feeding traits can alter biotic and abiotic attributes of environments through changes in the form of trophic interactions. The predator-induced environmental alterations may, in turn, drive evolutionary changes in adaptive traits of themselves as well as of other members in the communities. This process, in which ecology and evolution reciprocally interplay over contemporary time-scales, is termed “eco-evolutionary feedback.” In this chapter, we review how and when trophic polymorphism has been generated in fish populations and then discuss what consequences it has in ecological and evolutionary aspect. Special references are made to the case in the ancient Lake Biwa, which has a geological history long enough for divergent fish populations to come to ecological speciation and thus provides a good opportunity to understand how such an evolutionary process diversifies biological communities and consequently ecosystem properties in lakes.


Biodiversity Eco-evolutionary feedback Ecological speciation Ecosystem functioning Keystone predator Mesocosm Species pair Trophic polymorphism 



We thank Dr. T. Kokita for his comments on our manuscript. We also thank R. Kakioka and Y. Sakai for providing their unpublished data. This manuscript was under the support of the Global COE Program (06) from the MEXT, Japan, and The Environment Research and Technology Development Fund (D-1102 and S-9) of the Ministry of the Environment, Japan, and the JSPS Grant-in Aid (No.20370009 and No.23657019).


  1. Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326. doi: 10.1126/science.1060701 PubMedCrossRefGoogle Scholar
  2. Andersson J (2003) Effects of diet-induced resource polymorphism on performance in arctic charr (Salvelinus alpinus). Evol Ecol Res 5:213–228. Google Scholar
  3. Andersson J, Byström P, Persson L, De Roos AM (2005) Plastic resource polymorphism: effects of resource availability on Arctic char (Salvelinus alpinus) morphology. Biol J Linn Soc 85:341–351. doi: 10.1111/j.1095-8312.2005.00501.x CrossRefGoogle Scholar
  4. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376. doi: 10.1371/journal.pone.0003376 PubMedCrossRefGoogle Scholar
  5. Barluenga M, Stölting KN, Salzburger W, Muschick M, Meyer A (2006) Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439:719–723PubMedCrossRefGoogle Scholar
  6. Barrett RDH (2010) Adaptive evolution of lateral plates in three-spined stickleback Gasterosteus aculeatus: a case study in functional analysis of natural variation. J Fish Biol 77:311–328. doi: 10.1111/j.1095-8649.2010.02640.x
  7. Bassar RD, Marshall MC, López-Sepulcre A, Zandonà E, Auer SK, Travis J, Pringle CM, Flecker AS, Thomas SA, Fraser DF, Reznick DN (2010) Local adaptation in Trinidadian guppies alters ecosystem processes. Proc Natl Acad Sci U S A 107:3616–3621. doi: 10.1073/pnas.0908023107 PubMedCrossRefGoogle Scholar
  8. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160. doi: 10.1038/nature03891Bolnick DI PubMedCrossRefGoogle Scholar
  9. Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28. Google Scholar
  10. Bootsma HA, Hecky RE, Hesslein RH, Turner GF (1996) Food partitioning among Lake Malawi nearshore fishes as revealed by stable isotope analyses. Ecology 77:1286–1290. Google Scholar
  11. Brooks JL, Dodson SI (1965) Predation, body size, and competition of plankton. Science 150:28–35. Google Scholar
  12. Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86–89. doi: 10.1038/nature09904 PubMedCrossRefGoogle Scholar
  13. Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. BioSci 35:634–639. Google Scholar
  14. Carpenter SR, Cottingham KL, Schindler DE (1992) Biotic feedbacks in lake phosphorus cycles. Trends Ecol Evol 7:332–336. Google Scholar
  15. Chalcraft DR, Resetarits Jr. WJ (2003) Predator identity and ecological impacts: functional redundancy or functional diversity? Ecology 84:2407–2418. Google Scholar
  16. Cohen JE, Jonsson T, Carpenter SR (2003) Ecological community description using the food web, species abundance, and body size. Proc Natl Acad Sci U S A 100:1781–1786PubMedCrossRefGoogle Scholar
  17. Colosimo PF, Peichel CL, Nereng K, Blackman BK, Shapiro MD, Schluter D, Kingsley DM (2004) The genetic architecture of parallel armor plate reduction in threespine sticklebacks. PLoS Biol 2:0635–0641. doi: 10.1371/journal.pbio.0020109 CrossRefGoogle Scholar
  18. Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G Jr, Dickson M, Grimwood J, Schmutz J, Myers RM, Schluter D, Kingsley DM (2005) Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307:1928–1933. doi: 10.1126/science.1107239 PubMedCrossRefGoogle Scholar
  19. Conover DO, Duffy TA, Hice LA (2009) The covariance between genetic and environmental Influences across ecological gradients: reassessing the evolutionary significance of countergradient and cogradient variation. Ann N Y Acad Sci 1168:100–129. doi: 10.1111/j.1749-6632.2009.04575.x PubMedCrossRefGoogle Scholar
  20. Cresko WA, Amores A, Wilson C, Murphy J, Currey M, Phillips P, Bell MA, Kimmel CB, Postlethwait JH (2004) Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proc Natl Acad Sci U S A 101:6050–6055. doi: 10.1073/pnas.0308479101 PubMedCrossRefGoogle Scholar
  21. de Eyto E, Irvine K (2007) Assessing the status of shallow lakes using an additive model of biomass size spectra. Aquat Conserv Mar Freshw Ecosyst 17:724–736CrossRefGoogle Scholar
  22. Derome N, Bernatchez L (2006) The transcriptomics of ecological convergence between 2 limnetic coregonine fishes (Salmonidae). Mol Biol Evol 23:2370–2378PubMedCrossRefGoogle Scholar
  23. Derome N, Duchesne P, Bernatchez L (2006) Parallelism in gene transcription among sympatric lake whitefish (Coregonus clupeaformis Mitchill) ecotypes. Mol Ecol 15:1239–1249PubMedCrossRefGoogle Scholar
  24. Ehlinger TJ (1990) Habitat choice and phenotype-limited feeding efficiency in bluegill: individual differences and trophic polymorphism. Ecology 71:886–896. Google Scholar
  25. Ehlinger TJ (1991) Allometry and analysis of morphometric variation in the bluegill, Lepomis macrochirus. Copeia 1991:347–357.
  26. Ellegren H, Sheldon BC (2008) Genetic basis of fitness differences in natural populations. Nature 452:169–175PubMedCrossRefGoogle Scholar
  27. Elton C (1927) Animal ecology. Sidgwick and Jackson, LondonGoogle Scholar
  28. Emmerson MC, Raffaelli D (2004) Predator–prey body size, interaction strength and the stability of a real food web. J Anim Ecol 73:399–409CrossRefGoogle Scholar
  29. Foote CJ, Moore K, Stenberg K, Craig KJ, Wenburg JK, Wood CC (1999) Genetic differentiation in gill raker number and length in sympatric anadromous and nonanadromous morphs of sockeye salmon, Oncorhynchus nerka. Environ Biol Fish 54:263–274. doi: 10.1023/A:1007548807233 CrossRefGoogle Scholar
  30. Forbes SA (1887) The lake as a microcosm. Bulletin of the Peoria Scientific Association 77–87Google Scholar
  31. Fukami T, Beaumont HJE, Zhang X-X, Rainey PB (2007) Immigration history controls diversification in experimental adaptive radiation. Nature 446:436–439. doi: 10.1038/nature05629 PubMedCrossRefGoogle Scholar
  32. Genner MJ, Turner GF, Barker S, Hawkins SJ (1999) Niche segregation among Lake Malawi cichlid fishes? Evidence from stable isotope signatures. Ecol Lett 2:185–190. doi: 10.1046/j.1461-0248.1999.00068.x CrossRefGoogle Scholar
  33. Gravel D, Bell T, Barbera C, Bouvier T, Pommier T, Venail P, Mouquet N (2011) Experimental niche evolution alters the strength of the diversity–productivity relationship. Nature 469:89–92. doi: 10.1038/nature09592 PubMedCrossRefGoogle Scholar
  34. Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11:92–98.
  35. Hairston NG Jr, Ellner SP, Geber MA, Yoshida T, Fox JA (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8:1114–1127. doi: 10.1111/j.1461-0248.2005.00812.x CrossRefGoogle Scholar
  36. Harmon LJ, Matthews B, Des Roches S, Chase JM, Shurin JB, Schluter D (2009) Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458:1167–1170. doi: 10.1038/nature07974 PubMedCrossRefGoogle Scholar
  37. Hegrenes S (2001) Diet-induced phenotypic plasticity of feeding morphology in the orangespotted sunfish, Lepomis humilis. Ecol Freshw Fish 10:35–42. doi: 10.1034/j.1600-0633.2001.100105.x CrossRefGoogle Scholar
  38. Hendry AP (2009) Ecological speciation! Or the lack thereof? Can J Fish Aquat Sci 66:1383–1398. doi: 10.1139/F09-074 CrossRefGoogle Scholar
  39. Hendry AP, Wenburg JK, Bentzen P, Volk EC, Quinn TP (2000) Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290:516–518PubMedCrossRefGoogle Scholar
  40. Hendry AP, Bolnick DI, Berner D, Peichel CL (2009) Along the speciation continuum in sticklebacks. J Fish Biol 75:2000–2036PubMedCrossRefGoogle Scholar
  41. Hendry AP, Hudson K, Walker JA, Räsänen K, Chapman LJ (2011) Genetic divergence in morphology–performance mapping between Misty Lake and inlet stickleback. J Evol Biol 24:23–35. doi: 10.1111/j.1420-9101.2010.02155.x PubMedCrossRefGoogle Scholar
  42. Jennings S, Mackinson S (2003) Abundance–body mass relationships in size-structured food webs. Ecol Let 6:971–974CrossRefGoogle Scholar
  43. Jennings S, Warr KJ, Mackinson S (2002) Use of size-based production and stable isotope analyses to predict trophic transfer efficiencies and predator–prey body mass ratios in food webs. Mar Ecol Prog Ser 240:11–20CrossRefGoogle Scholar
  44. Kakioka R (2013) Adaptive divergences of cyprinid fishes in relation to divergent habitat use. Doctoral Thesis, Kyoto University, KyotoGoogle Scholar
  45. Kakioka R, Kokita T, Tabata R, Mori S, Watanabe K (2013a) The origins of limnetic forms and cryptic divergence in Gnathopogon fishes (Cyprinidae) in Japan. Environ Biol Fish 96:631–644. doi: 10.1007/s10641-012-0054-x Google Scholar
  46. Kakioka R, Kokita T, Kumada H, Watanabe K, Okuda N (2013b) A RAD-based linkage map for QTL analysis and comparative genomics in the gudgeons (genus Gnathopogon, Cyprinidae). BMC Genomics 14:32.
  47. Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, Szeto E, Salamov A, Grigoriev IV, Suciu D, Levine SR, Markowitz VM, Rigoutsos I, Tringe SG, Bruce DC, Richardson PM, Lidstrom ME, Chistoserdova L (2008) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26:1029–1034. doi: 10.1038/nbt.1488 PubMedCrossRefGoogle Scholar
  48. Kawamura K, Yonekura R, Katano O, Taniguchi Y, Saitoh K (2006) Origin and dispersal of bluegill sunfish, Lepomis macrochirus, in Japan and Korea. Mol Ecol 15:613–621. doi: 10.1111/j.1365-294X.2006.02823.x PubMedCrossRefGoogle Scholar
  49. Kimmel CB, Ullmann B, Walker C, Wilson C, Currey M, Phillips PC, Bell MA, Postlethwait JH, Cresko WA (2005) Evolution and development of facial bone morphology in threespine sticklebacks. Proc Natl Acad Sci U S A 102:5791–5796. doi:  10.1073/pnas.0408533102 PubMedCrossRefGoogle Scholar
  50. Kinzig AP, Pacala SW, Tilman D (2001) The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, PrincetonGoogle Scholar
  51. Knudsen R, Primicerio R, Amundsen P-A, Klemetsen A (2010) Temporal stability of individual feeding specialization may promote speciation. J Anim Ecol 79:161–168. doi: 10.1111/j.1365-2656.2009.01625.x PubMedCrossRefGoogle Scholar
  52. Lass S, Spaak P (2003) Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491:221–239. doi: 10.1023/A:1024487804497 CrossRefGoogle Scholar
  53. Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–417CrossRefGoogle Scholar
  54. McIntyre PB, Flecker AS, Vanni MJ, Hood JM, Taylor BW, Thomas SA (2008) Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology 89:2335–2346. Google Scholar
  55. McKinnon JS, Rundle HD (2002) Speciation in nature: the threespine stickleback model systems. Trends Ecol Evol 17:480–488.
  56. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island, Washington, DCGoogle Scholar
  57. Miner BG, Sultan SE, Morgan SG, Padilla DK, Relyea RA (2005) Ecological consequences of phenotypic plasticity. Trends Ecol Evol 20:685–692. Google Scholar
  58. Nakamura M (1969) Cyprinid fishes in Japan. Midori Shobo, Tokyo (in Japanese)Google Scholar
  59. Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton University Press, PrincetonGoogle Scholar
  60. Okuda N, Takeyama T, Komiya T, Kato Y, Okuzaki Y, Karube J, Sakai Y, Hori M, Tayasu I, Nagata T (2012) A food web and its long-term dynamics in Lake Biwa: a stable isotope approach. In: Kawanabe H (ed) Lake Biwa: interactions between nature and people, Springer, Amsterdam, pp 205–210Google Scholar
  61. Olsson J, Eklöv P (2005) Habitat structure, feeding mode and morphological reversibility: factors influencing phenotypic plasticity in perch. Evol Ecol Res 7:1109–1123Google Scholar
  62. Osenberg CW, Huckins CJF, Kaltenberg A, Martinez A (2004) Resolving within- and between-population variation in feeding ecology with a biomechanical model. Oecologia 141:57–65. doi: 10.1007/s00442-004-1650-z PubMedCrossRefGoogle Scholar
  63. Palkovacs EP, Post DM (2008) Eco-evolutionary interactions between predators and prey: can predator-induced changes to prey communities feed back to shape predator foraging traits? Evol Ecol Res 10:699–720.
  64. Palkovacs EP, Post DM (2009) Experimental evidence that phenotypic divergence in predators drives community divergence in prey. Ecology 90:300–305. Google Scholar
  65. Palkovacs EP, Dion KB, Post DM, Caccone A (2008) Independent evolutionary origins of landlocked alewife populations and rapid parallel evolution of phenotypic traits. Mol Ecol 17:582–597. doi: 10.1111/j.1365-294X.2007.03593.x PubMedCrossRefGoogle Scholar
  66. Palkovacs EP, Marshall MC, Lamphere BA, Lynch BR, Weese DJ, Fraser DF, Reznick DN, Pringle CM, Kinnison MT (2009) Experimental evaluation of evolution and coevolution as agents of ecosystem change in Trinidadian streams. Philos Trans R Soc Lond B 364:1617–1628. doi: 10.1098/rstb.2009.0016 CrossRefGoogle Scholar
  67. Peichel CL, Nereng KS, Ohgi KA, Cole BLE, Colosimo PF, Buerkle CA, Schluter D, Kingsley DM (2001) The genetic architecture of divergence between threespine stickleback species. Nature 414:901–905. doi: 10.1038/414901a PubMedCrossRefGoogle Scholar
  68. Post DM (2002) The long and short of food-chain length. Trends Ecol Evol 17:269–277CrossRefGoogle Scholar
  69. Post DM, Palkovacs EP (2009) Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos Trans R Soc Lond B 364:1629–1640. doi: 10.1098/rstb.2009.0012 CrossRefGoogle Scholar
  70. Post DM, Pace ML, Hairston NG Jr (2000) Ecosystem size determines food-chain length in lakes. Nature 405:1047–1049PubMedCrossRefGoogle Scholar
  71. Post DM, Palkovacs EP, Schielke EG, Dodson SI (2008) Intraspecific variation in a predator affects community structure and cascading trophic interactions. Ecology 89:2019–2032. doi: 10.1890/07-1216.1 PubMedCrossRefGoogle Scholar
  72. Proulx R, Magnan P (2004) Contribution of phenotypic plasticity and heredity to the trophic polymorphism of lacustrine brook charr (Salvelinus fontinalis M.). Evol Ecol Res 6:503–522.
  73. Robinson BW (2000) Trade offs in habitat-specific foraging efficiency and the nascent adaptive divergence of sticklebacks in lakes. Behaviour 137:865–888. Google Scholar
  74. Rogers SM, Bernatchez L (2007) The genetic architecture of ecological speciation and the association with signatures of selection in natural lake whitefish (Coregonus sp. Salmonidae) species pairs. Mol Biol Evol 24:1423–1438. doi: 10.1093/molbev/msm066 PubMedCrossRefGoogle Scholar
  75. Sacotte S, Magnan P (2006) Inherited differences in foraging behaviour in the offspring of two forms of lacustrine brook charr. Evol Ecol Res 8:843–857.
  76. Sakai Y (2013) Spatio-temporal dynamics of planktonic food webs in the coastal ecosystem of Lake Biwa. Doctoral Thesis, Kyoto University, KyotoGoogle Scholar
  77. Schmitz OJ (2009) Effects of predator functional diversity on grassland ecosystem function. Ecology 90:2339–2345. Google Scholar
  78. Secretariat of the Convention on Biological Diversity (2010) Global Biodiversity Outlook 3. An open access publication (, Montréal
  79. Seehausen O (2006) African cichlid fish: a model system in adaptive radiation research. Proc R Soc Lond B 273:1987–1998. doi: 10.1098/rspb.2006.3539 CrossRefGoogle Scholar
  80. Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–626. doi: 10.1038/nature07285 PubMedCrossRefGoogle Scholar
  81. Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, Jónsson B, Schluter D, Kingsley DM (2004) Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428:717–723. doi: 10.1038/nature02415 PubMedCrossRefGoogle Scholar
  82. Sibthorpe D, Sturlaugsdóttir R, Kristjansson BK, Thorarensen H, Skúlason S, Johnston IA (2006) Characterisation and expression of the paired box protein 7 (Pax7) gene in polymorphic Arctic charr (Salvelinus alpinus). Comp Biochem Physiol B 145:371–383PubMedCrossRefGoogle Scholar
  83. Smith TB, Skulason S (1996) Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Ann Rev Ecol Syst 27:111–133. Google Scholar
  84. Straub CS, Snyder WE (2006) Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology 87:277–282. Google Scholar
  85. Taylor EB (1999) Species pairs of north temperate freshwater fishes: Evolution, taxonomy, and conservation. Rev Fish Biol Fish 9:299–324. doi: 10.1023/A:1008955229420 CrossRefGoogle Scholar
  86. Terashima A (1980) Bluegill: a vacant ecological niche in Lake Biwa. In: Kawai T, Kawanabe H, Mizuno N (eds) Japanese freshwater organisms: ecology of invasion and disturbance. Tokai University Press, Tokyo, pp 63–70Google Scholar
  87. Timoshkin OA, Grygier MJ, Wada E, Nakai K, Nishino M, Genkal SI, Biserov VI, Gagarin VG, Semernoy VP, Jankowski AW, Stepanjants SD, Tsalolikhin SY, Starobogatov YI, Alexeev VR, Tuzovskij PV, Okuneva GL, Sheveleva NG, Pomazkova GI, Arov IV, Mazepova GF, Janz H, Obolkina LA, Chernyshev AV, Morino H, Matsuda M, Ohtsuka T, Kawakatsu M, Maehata M, Masuda Y, Faubel A, Yahiro K, Hirasawa R, Tuji A, Kusuoka Y, Kameda K, Ishida T, Itoh T, Ichise S, Wakabayashi T, Okubo I, Seki S, Nagasawa K, Ogawa K, Masunaga K,Gamo J (2011) Biodiversity of Lake Biwa: new discoveries and future potential. In: Timoshkin OA (ed) Index of animal species inhabiting Lake Baikal and its Catchment Area. Volume II: Basins and Channels in the South of East Siberia and North Mongolia, vol 2. Russian Academy of Sciences, Siberian Division, Limnological Institute, Novosibirsk, pp 1439–1513Google Scholar
  88. Torres LE, Vanni MJ (2007) Stoichiometry of nutrient excretion by fish: interspecific variation in a hypereutrophic lake. Oikos 116:259–270. doi: 10.1111/j.0030-1299.2007.15268.x CrossRefGoogle Scholar
  89. Uchii K (2007) Adaptive significance of a herbivorous morph in blugill sunfish introduced into Lake Biwa. Doctoral Thesis, Kyoto University, KyotoGoogle Scholar
  90. Uchii K, Okuda N, Yonekura R, Karube Z, Matsui K, Kawabata Z (2007) Trophic polymorphism in bluegill sunfish (Lepomis macrochirus) introduced into Lake Biwa: evidence from stable isotope analysis. Limnology 8:59–63. doi: 10.1007/s10201-006-0196-7 CrossRefGoogle Scholar
  91. Vanni MJ (2002) Nutrient cycling by animals in freshwater ecosystems. Ann Rev Ecol Syst 33:341–370. doi: 10.1146/annurev.ecolsys.33.010802.150519 CrossRefGoogle Scholar
  92. Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999) The relationship between productivity and species richness. Ann Rev Ecol Syst 30:257–300. Google Scholar
  93. Wainwright PC, Osenberg CW, Mittelbach GG (1991) Trophic polymorphism in the pumpkinseed sunfish (Lepomis gibbosus Linnaeus): effects of environment on ontogeny. Funct Ecol 5:40–55. Google Scholar
  94. Walsh MR, Post DM (2011) Interpopulation variation in a fish predator drives evolutionary divergence in prey in lakes. Proc R Soc Lond B 278:2628–2637. doi: 10.1098/rspb.2010.2634 CrossRefGoogle Scholar
  95. Walsh MR, Post DM (2012) The impact of intraspecific variation in a fish predator on the evolution of phenotypic plasticity and investment in sex in Daphnia ambigua. J Evol Biol 25:80–89. doi: 10.1111/j.1420-9101.2011.02403.x PubMedCrossRefGoogle Scholar
  96. Wesner JS (2012) Predator diversity effects cascade across an ecosystem boundary. Oikos 121:53–60. doi: 10.1111/j.1600-0706.2011.19413.x CrossRefGoogle Scholar
  97. Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523. doi: 10.1038/nrg1877 PubMedCrossRefGoogle Scholar
  98. Wilson DS (1998) Adaptive individual differences within single populations. Philos Trans R Soc Lond B 353:199–205. doi: 10.1098/rstb.1998.0202 CrossRefGoogle Scholar
  99. Yonekura R, Nakai K, Yuma M (2002) Trophic polymorphism in introduced bluegill in Japan. Ecol Res 17:49–57. doi: 10.1046/j.1440-1703.2002.00462.x CrossRefGoogle Scholar
  100. Yonekura R, Kawamura K, Uchii K (2007a) A peculiar relationship between genetic diversity and adaptability in invasive exotic species: bluegill sunfish as a model species. Ecol Res 22:911–919. doi: 10.1007/s11284-007-0357-0 CrossRefGoogle Scholar
  101. Yonekura R, Kohmatsu Y, Yuma M (2007b) Difference in the predation impact enhanced by morphological divergence between introduced fish populations. Biol J Linn Soc 91:601–610. doi: 10.1111/j.1095-8312.2007.00821.x CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Noboru Okuda
    • 1
  • Katsutoshi Watanabe
    • 2
  • Kayoko Fukumori
    • 3
  • Shin-ichi Nakano
    • 1
  • Takefumi Nakazawa
    • 4
  1. 1.Center for Ecological ResearchKyoto UniversityOtsuJapan
  2. 2.Department of Zoology Graduate School of ScienceKyoto UniversityKyotoJapan
  3. 3.Section of Integrative BiologyThe University of Texas at AustinAustinUSA
  4. 4.Department of Life Sciences The College of Biosciences and BiotechnologyNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations