Genetic Variants of the Dopaminergic System in Humans and Model Organisms

  • Kouta Kanno
  • Shoichi Ishiura
Part of the Primatology Monographs book series (PrimMono)


Human personality is shaped by both genetic and environmental factors. Molecular genetics has begun to identify specific genes for quantitative traits. The first candidate genes investigated were components of the monoamine neurotransmitter pathways, such as serotonin and dopamine. The serotonergic system is involved in mood, anxiety, and aggression. Temperamental predisposition and behavior are likely to be influenced by genetic variations of serotonergic genes – i.e., serotonin-metabolizing enzymes, tryptophan hydroxylase and monoamine oxidase (MAO), catechol-O-methyltransferase (COMT), 14 kinds of serotonin receptor (5-hydroxytryptamine, or 5HT) and serotonin transporter (SERT).


Attention Deficit Hyperactivity Disorder Tyrosine Hydroxylase Reverse Transcription Polymerase Chain Reaction Core Promoter bHLH Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the grants from the Ministry of Health, Labor, and Welfare, Japan, and the Human Frontier Science Program.


  1. Bannon MJ, Michelhaugh SK, Wang J, Sacchetti P (2001) The human dopamine transporter gene: gene organization, transcriptional regulation, and potential involvement in neuropsychiatric disorder. Eur Neuropsychopharmacol 11:449–455PubMedCrossRefGoogle Scholar
  2. Belandia B, Powell SM, Garcia-Pedrero JM, Walker MM, Bevan CL, Parker MG (2005) Hey1, a mediator of notch signaling, is an androgen receptor corepressor. Mol Cell Biol 25:1425–1436PubMedCrossRefGoogle Scholar
  3. Brookes KJ, Neale BM, Sugden K, Khan N, Asherson A, D’Souza UM (2007) Relationship between VNTR polymorphisms of the human dopamine transporter gene and expression in post-mortem midbrain tissue. Am J Med Genet B Neuropsychiatr Genet 144B:1070–1078PubMedCrossRefGoogle Scholar
  4. Brunswick DJ, Amsterdam JD, Mozley PD, Newberg A (2003) Greater availability of brain dopamine transporters in major depression shown by [99m Tc] TRODAT-1 SPECT imaging. Am J Psychiatry 160:1836–1841PubMedCrossRefGoogle Scholar
  5. Caine SB (1998) Cocaine abuse: hard knocks for the dopamine hypothesis? Nature Neurosci 1:90–92PubMedCrossRefGoogle Scholar
  6. Cook EH Jr, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL (1995) Association of attention-deficit disorder and dopamine transporter gene. Am J Hum Genet 56:993–998PubMedGoogle Scholar
  7. D’Souza UM, Craig IW (2008) Functional genetic polymorphisms in serotonin and dopamine gene systems and their significance in behavioural disorders. Prog Brain Res 172:73–98PubMedCrossRefGoogle Scholar
  8. Fauchey V, Jaber M, Caron MG, Bloch B, Moine CL (2000) Differential regulation of the dopamine D1, D2 and D3 receptor gene expression and changes in the phenotype of the striatal neurons in mice lacking the dopamine transporter. Eur J Neurosci 12:19–26PubMedCrossRefGoogle Scholar
  9. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S (2001) The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J 1:152–156PubMedCrossRefGoogle Scholar
  10. Fuke S, Sasagawa N, Ishiura S (2005) Identification and characterization of the Hesr1/Hey1 as a candidate trans-acting factor on gene expression through the 3′ noncoding polymorphic region of the human dopamine transporter (DAT1) gene. J Biochem 137:205–216PubMedCrossRefGoogle Scholar
  11. Fuke S, Minami N, Kokubo H, Yoshikawa A, Yasumatsu H, Sasagawa N, Saga Y, Tsukahara T, Ishiura S (2006) Hesr1 knockout mice exhibit behavioral alterations through the dopaminergic nervous system. J Neurosci Res 84:1555–1563PubMedCrossRefGoogle Scholar
  12. Gainetdinov RR, Sotnikova TD, Caron MG (2002) Monoamine transporter pharmacology and mutant mice. Trends Pharmacol Sci 23:367–373PubMedCrossRefGoogle Scholar
  13. Giros B, Caron MG (1993) Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 14:43–49PubMedCrossRefGoogle Scholar
  14. Giros B, el Mestikawy S, Bertrand L, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295:149–154PubMedCrossRefGoogle Scholar
  15. Giros B, el Mestikawy S, Godinot N, Zheng K, Han H, Yang-Feng T, Caron MG (1992) Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 42:383–390PubMedGoogle Scholar
  16. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612PubMedCrossRefGoogle Scholar
  17. Greenwood TA, Kelsoe JR (2003) Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics 82:511–519PubMedCrossRefGoogle Scholar
  18. Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG, Lee KS, Linnoila M, Weinberger DR (2000) Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology 22:133–139PubMedCrossRefGoogle Scholar
  19. Henderson AM, Wang SJ, Taylor AC, Aitkenhead M, Hughes CC (2001) The basic helix–loop–helix transcription factor HESR1 regulates endothyelial cell tube formation. J Biol Chem 276:6169–6176PubMedCrossRefGoogle Scholar
  20. Inoue-Murayama M, Adachi S, Mishima N, Mitani H, Takenaka O, Terao K, Hayasaka I, Ito S, Murayama Y (2002) Variation of variable number of tandem repeat sequences in the 3′-untranslated region of primate dopamine transporter genes that affects reporter gene expression. Neurosci Lett 334:206–210PubMedCrossRefGoogle Scholar
  21. Iso T, Sartorelli V, Poizat C, Iezzi S, Wu HY, Chung G, Kedes L, Hamamori Y (2001) HERP, a novel heterodimer partner of HES/E (spl) in notch signaling. Mol Cell Biol 21:6080–6089PubMedCrossRefGoogle Scholar
  22. Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255PubMedCrossRefGoogle Scholar
  23. Jaber M, Dumartin B, Sagne C, Haycock JW, Roubert C, Giros B, Bloch B, Caron MG (1999) Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter. Eur J Neurosci 11:3499–3511PubMedCrossRefGoogle Scholar
  24. Jackson DM, Westlind-Danielson A (1994) Dopamine receptors: molecular biology, biochemistry and behavioral aspects. Pharmacol Ther 64:291–336PubMedCrossRefGoogle Scholar
  25. Jacobsen LK, Staley JK, Zoghbi SS, Seibyl JP, Kosten TR, Innis RB, Gelernter J (2000) Prediction of dopamine transporter binding availability by genotype: a preliminary report. Am J Psychiatry 157:1700–1703PubMedCrossRefGoogle Scholar
  26. Kanno K, Ishiura S (2009) Function of transcription factor HESR family on dopamine transporter expression via variable number of tandem repeat. Abstract 618.26 from 2009 Society for Neuroscience Annual Meeting, Chicago, ILGoogle Scholar
  27. Kilty JE, Lorang D, Amara SG (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254:578–579PubMedCrossRefGoogle Scholar
  28. Klenova E, Scott AC, Roberts J, Shamsuddin S, Lovejoy EA, Bergmann S, Bubb VJ, Royer H-D, Quinn JP (2004) YB-1 and CTCF differentially regulate the 5-HTT polymorphic intron 2 enhancer which predisposes to a variety of neurological disorders. J Neurosci 24:5966–5973PubMedCrossRefGoogle Scholar
  29. Kokubo H, Lun Y, Johnson RL (1999) Identification and expression of novel family of bHLH cDNAs related to Drosophila hairy and enhancer of split. Biochem Biophys Res Commun 260:459–465PubMedCrossRefGoogle Scholar
  30. Kokubo H, Tomita-Miyagawa S, Hamada Y, Saga Y (2007) Hesr1 and Hesr2 regulate atrioventricular boundary formation in the developing heart through the repression of Tbx2. Development 134:747–755PubMedCrossRefGoogle Scholar
  31. Krause KK, Dresel SH, Krause J, Fougere C, Ackenheil M (2003) The dopamine transporter and neuroimaging in attention deficit hyperactivity disorder. Neurosci Biobehav Rev 27:605–613PubMedCrossRefGoogle Scholar
  32. Lammel S, Hetzel A, Häckel O, Jones I, Liss B, Roeper J (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773PubMedCrossRefGoogle Scholar
  33. Leimeister C, Externbrink A, Klamt B, Gessler M (1999) Hey genes: a novel subfamily of hairy- and enhancer of split related genes specifically expressed during mouse embryogenesis. Mech Dev 85:173–177PubMedCrossRefGoogle Scholar
  34. Madras BK, Gracz LM, Fahey MA, Elmaleh D, Meltzer PC, Liang AY, Stopa EG, Babich J, Fischman AJ (1998) Altropane, a SPECT or PET imaging probe for dopamine neurons. III. Human dopamine transporter in postmortem normal and Parkinson’s diseased brain. Synapse 29:116–127PubMedCrossRefGoogle Scholar
  35. Martinez D, Gelernter J, Abi-Dargham A, van Dyck CH, Kegeles L, Innis RB, Laruelle M (2001) The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans. Neuropsychopharmacology 24:553–560PubMedCrossRefGoogle Scholar
  36. Michelhaugh SK, Fiskerstrand C, Lovejoy E, Bannon MJ, Quinn JP (2001) The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. J Neurochem 79:1033–1038PubMedCrossRefGoogle Scholar
  37. Mill J, Asherson P, Browes C, D’Souza U, Craig I (2002) Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR. Am J Med Genet B Neuropsychiatr Genet 114B:975–979CrossRefGoogle Scholar
  38. Mill J, Asherson P, Craig I, D’Souza UM (2005) Transient expression analysis of allelic variants of a VNTR in the dopamine transporter gene (DAT1). BMC Genet 6:3PubMedCrossRefGoogle Scholar
  39. Miller GM, Madras BK (2002) Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry 7:44–55PubMedCrossRefGoogle Scholar
  40. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225PubMedGoogle Scholar
  41. Muller-Vahl KR, Berding G, Brucke T, Kolbe H, Meyer GJ, Hundeshagen H, Dengler R, Knapp WH, Emrich HM (2000) Dopamine transporter binding in Gilles de la Tourette syndrome. J Neurol 247:514–520PubMedCrossRefGoogle Scholar
  42. Nakagawa O, Nakagawa M, Richardson JA, Olson EN, Srivastava D (1999) HRT1, HRT2, and HRT3: a new subclass of bHLH transcription factors marking specific cardiac, somatic, and pharyngeal arch segments. Dev Biol 216:72–84PubMedCrossRefGoogle Scholar
  43. Nakagawa O, McFadden DG, Nakagawa M, Yanagisawa H, Hu T, Srivastava D, Olson EN (2000) Members of the HRT family of basic helix–loop–helix proteins act as transcriptional repressors downstream of Notch signaling. Proc Natl Acad Sci USA 97:13655–13660PubMedCrossRefGoogle Scholar
  44. Ohadi M, Shirazi E, Tehranidoosti M, Moghimi N, Keikhaee MR, Ehssani S et al (2006) Attention-deficit/hyperactivity disorder (ADHD) association with the DAT1 core promoter-67 T allele. Brain Res 1101:1–4PubMedCrossRefGoogle Scholar
  45. Ohadi M, Keikhaee MR, Javanbakht A, Sargolzaee MR, Robabeh M, Najmabadi H (2007) Gender dimorphism in the DAT1-67 T-allele homozygosity and predisposition to bipolar disorder. Brain Res 1144:142–145PubMedCrossRefGoogle Scholar
  46. Roberts J, Scott AC, Howard MR, Breen G, Bubb VJ, Klenova E, Quinn JP (2007) Differential regulation of the serotonin transporter gene by lithium is mediated by transcription factors, CCCTC binding protein and Y-box binding protein 1, through the polymorphic intron 2 variable number tandem repeat. J Neurosci 27:2793–2801PubMedCrossRefGoogle Scholar
  47. Sakamoto M, Hirata H, Ohtsuka T, Bessho Y, Kageyama R (2003) The basic helix–loop–helix genes hesr1/hey1 and hesr2/hey2 regulate maintenance of neural precursor cells in the brain. J Biol Chem 278:44808–44815PubMedCrossRefGoogle Scholar
  48. Shibuya N, Kamata M, Suzuki A, Matsumoto Y, Goto K, Otani K (2009) The −67 A/T promoter polymorphism in the dopamine transporter gene affects personality traits of Japanese healthy females. Behav Brain Res 203:23–26. doi: 10.1016/j.bbr.2009.04.008 PubMedCrossRefGoogle Scholar
  49. Shimada S, Kitayama S, Lin CL, Patel A, Nanthakumar E, Gregor P, Kuhar M, Uhl GR (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254:576–578PubMedCrossRefGoogle Scholar
  50. Steidl C, Leimeister C, Klamt B, Maier M, Nanda L, Dixon M, Clarke R, Schmid M, Gessler M (2000) Characterization of the human and mouse HEY1, HEY2, and HEYL genes: cloning, mapping, and mutation screening of a new bHLH gene family. Genomics 66:195–203PubMedCrossRefGoogle Scholar
  51. Ueno S (2003) Genetic polymorphisms of serotonin and dopamine transporters in mental disorders. J Med Invest 50:25–31PubMedGoogle Scholar
  52. Uhl GR (2003) Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion, and Parkinsonism. Mov Disord 18:71–80CrossRefGoogle Scholar
  53. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14:1104–1106PubMedCrossRefGoogle Scholar
  54. Vandenbergh DJ, Thompson MD, Cook EH, Bendahhou E, Nguyen T, Krasowski MD, Zarrabian D, Comings D, Sellers EM, Tyndale RF, George SR, O’Dowd BF, Uhl GR (2000) Human dopamine transporter gene: coding region conservation among normal, Tourette’s disorder, alcohol dependence and attention-deficit hyperactivity disorder populations. Mol Psychiatry 5:283–292PubMedCrossRefGoogle Scholar
  55. VanNess SH, Owens MJ, Kilts CD (2005) The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet 6:55PubMedCrossRefGoogle Scholar
  56. Villaronga MA, Lavery DN, Bevan CL, Llanos S, Belandia B (2009) HEY1 Leu94Met gene polymorphism dramatically modifies its biological functions. Oncogene 29:411–420PubMedCrossRefGoogle Scholar
  57. Wang W, Campos AH, Prince CZ, Mou Y, Pollman MJ (2002) Coordinate notch3-hairy-related transcription factor pathway regulation in response to arterial injury. J Biol Chem 277:23165–23171PubMedCrossRefGoogle Scholar
  58. Yang B, Chan RCK, Jing J, Li T, Sham P, Chen RYL (2007) A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3uUTR of dopamine transporter gene and attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 144B:541–550PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of Life Sciences Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
  2. 2.Department of Biological Sciences Graduate School of ScienceThe University of TokyoBunkyo-kuJapan
  3. 3.Japan Society for Promotion of Science Research FellowBunkyo-kuJapan

Personalised recommendations