Parallel Retrieval of Nanometer-Scale Light-Matter Interactions for Nanophotonic Systems

  • Naoya Tate
  • Wataru Nomura
  • Takashi Yatsui
  • Tadashi Kawazoe
  • Makoto Naruse
  • Motoichi Ohtsu
Part of the Proceedings in Information and Communications Technology book series (PICT, volume 2)

Abstract

Exploiting the unique attributes of nanometer-scale optical near-field interactions in a completely parallel manner is important for innovative nanometric optical processing systems. In this paper, we propose the basic concepts necessary for parallel retrieval of light–matter interactions on the nanometer-scale instead of the conventional one-dimensional scanning method. One is the macro-scale observation of optical near-fields, and the other is the transcription of optical near-fields. The former converts effects occurring locally on the nanometer scale involving optical near-field interactions to propagating light radiation, and the latter magnifies the distributions of optical near-fields from the nanometer scale to the sub-micrometer one. Those techniques allow us to observe optical far-field signals that originate from the effects occurring at the nanometer scale. We numerically verified the concepts and principles using electromagnetic simulations.

Keywords

Manganese Hexa Tate Rubidium Hexacyanoferrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ohtsu, M., Kobayashi, K., Kawazoe, T., Sangu, S., Yatsui, T.: Nanophotonics: Design, Fabrication, and Operation of Nanometric Devices Using Optical Near Fields. IEEE J. Sel. Top. Quantum Electron. 8(4), 839–862 (2002)CrossRefGoogle Scholar
  2. 2.
    Naruse, M., Miyazaki, T., Kawazoe, T., Kobayashi, K., Sangu, S., Kubota, F., Ohtsu, M.: Nanophotonic Computing Based on Optical Near-Field Interactions between Quantum Dots. IEICE Trans. Electron E88-C(9), 1817–1823 (2005)CrossRefGoogle Scholar
  3. 3.
    Nishida, T., Matsumoto, T., Akagi, F., Hieda, H., Kikitsu, A., Naito, K.: Hybrid recording on bit-patterned media using a near-field optical head. J. Nanophotonics B, 011597 (2007)CrossRefGoogle Scholar
  4. 4.
    Ozbay, E.: Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science 311, 189–193 (2006)CrossRefGoogle Scholar
  5. 5.
    Ohtsu, M.: Nanophotonics in Japan. J. Nanophotonics 1, 0115901–7 (2007)Google Scholar
  6. 6.
    Naruse, M., Kawazoe, T., Yatsui, T., Sangu, S., Kobayashi, K., Ohtsu, M.: Progress in Nano-Electro-Optics V. Ohtsu, M. (ed.). Springer, Berlin (2006)Google Scholar
  7. 7.
    Mononobe, S.: Near-Field Nano/Atom Optics and Technology, pp. 31–69. Springer, Berlin (1998)Google Scholar
  8. 8.
    Maheswari Rajagopalan, U., Mononobe, S., Yoshida, K., Yoshimoto, M., Ohtsu, M.: Nanometer level resolving near field optical microscope under optical feedback in the observation of a single-string deoxyribo nucleic acid. Jpn. J. Appl. Phys. 38(12A), 6713–6720 (1999)CrossRefGoogle Scholar
  9. 9.
    Inao, Y., Nakasato, S., Kuroda, R., Ohtsu, M.: Near-field lithography as prototype nano-fabrication tool. Science Direct Microelectronic Engineering 84, 705–710 (2007)CrossRefGoogle Scholar
  10. 10.
    Kawazoe, T., Ohtsu, M., Inao, Y., Kuroda, R.: Exposure dependence of the developed depth in nonadiabatic photolithography using visible optical near fields. J. Nanophotonics 1, 0115951–9 (2007)Google Scholar
  11. 11.
    Yatsui, T., Hirata, K., Nomura, W., Tabata, Y., Ohtsu, M.: Realization of an ultra-flat silica surface with angstrom-scale. Appl. Phys. B 93, 55–57 (2008)CrossRefGoogle Scholar
  12. 12.
    Naruse, M., Yatsui, T., Kawazoe, T., Tate, N., Sugiyama, H., Ohtsu, M.: Nanophotonic Matching by Optical Near-Fields between Shape-Engineered Nanostructures. Appl. Phys. Exp. 1, 112101 1-3 (2008)Google Scholar
  13. 13.
    Kobayashi, K., Sangu, S., Kawazoe, T., Shojiguchi, A., Kitahara, K., Ohtsu, M.: Excitation dynamics in a three-quantum dot system driven by optical near field interaction: towards a nanometric photonic device. J. Microscopy 210, 247–251 (2003)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kawazoe, T., Kobayashi, K., Akahane, K., Naruse, M., Yamamoto, N., Ohtsu, M.: Demonstration of a nanophotonic NOT gate using near-field optically coupled quantum dots. Appl. Phys. B 84, 243–246 (2006)CrossRefGoogle Scholar
  15. 15.
    Yatsui, T., Sangu, S., Kawazoe, T., Ohtsu, M., An, S.-J., Yoo, J.: Nanophotonic switch using ZnO nanorod double-quantum-well structures. Appl. Phys. Lett. 90(22), 223110-1-3 (2007)Google Scholar
  16. 16.
    Nomura, W., Yatsui, T., Kawazoe, T., Ohtsu, M.: Observation of dissipated optical energy transfer between CdSe quantum dots. J. Nanophotonics 1, 011591-1-7 (2007)Google Scholar
  17. 17.
    Lynch, D.W., Hunter, W.R.: Comments on the Optical Constants of Metals and an Introduction to the Data for Several Metals. In: Palik, E.D. (ed.) Handbook of Optical Constants of Solids, pp. 275–367. Academic Press, Orlando (1985)Google Scholar
  18. 18.
    Sato, O., Hayami, S., Einaga, Y., Gu, Z.Z.: Control of the Magnetic and Optical Properties in Molecular Compounds by Electrochemical, Photochemical and Chemical Methods. Bull. Chem. Soc. Jpn. 76(3), 443–470 (2003)CrossRefGoogle Scholar
  19. 19.
    Tokoro, H., Matsuda, T., Hashimoto, K., Ohkoshi, S.: Optical switching between bistable phases in rubidium manganese hexacyanoferrate at room temperature. J. Appl. Phys. 97, 10M508 (2005)Google Scholar

Copyright information

© Springer Tokyo 2010

Authors and Affiliations

  • Naoya Tate
    • 1
    • 2
  • Wataru Nomura
    • 1
    • 2
  • Takashi Yatsui
    • 1
    • 2
  • Tadashi Kawazoe
    • 1
    • 2
  • Makoto Naruse
    • 1
    • 2
    • 3
  • Motoichi Ohtsu
    • 1
    • 2
  1. 1.Department of Electrical Engineering and Information Systems, School of EngineeringThe University of TokyoTokyoJapan
  2. 2.Nanophotonics Research Center, School of EngineeringThe University of TokyoTokyoJapan
  3. 3.National Institute of Information and Communications TechnologyTokyoJapan

Personalised recommendations