Skip to main content

Limb development has been studied for over 100 years by several generations of developmental biologists. The developing limb is one of the best models with which to study pattern formation in vertebrates. We have used chick limb development to answer a simple but basic question, namely, why heterogeneous tissues are formed at correct positions and times from a homogeneous population of cells (Pearse & Tabin, 1998).

Limb development starts as two pairs of tissue bulges in the lateral plate meso-derm (LPM). These are called the forelimb and hindlimb fields (Fig. 9.1). After limb initiation, one can clearly identify three-dimensional axes in the limb buds: the proximal-distal (PD; from shoulder to fingers), dorso-ventral (DV; from back to palm), and antero-posterior (AP; from thumb to little fingers) axes. Morphological changes and differences along these three axes are determined by pattern formation during limb bud stages. Following establishment of these axes, one can visually recognize condensation of cartilages. Muscles, tendons, and neurons migrate and differentiate after cartilage formation. Because the stages and events are easily recognized morphologically and in detail, it is therefore the limb bud is an excellent model with which to study the molecular mechanisms of embryonic patterning and tissue differentiation in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bendall, A. J., Ding, J., Hu, G., Shen, M. M., Abate-Shen, C. (1999) Msx1 antagonizes the myo-genic activity of Pax3 in migrating limb muscle precursors. Development 126, 4965–4976.

    CAS  Google Scholar 

  • Kawakami, Y., Rodríguez-León, J., Koth, C. M., Büscher, D., Itoh, T., Raya, A., Ng, J. K., Esteban, C. R., Takahashi, S., Henrique, D., Schwarz, M. F., Asahara, H., Izpisúa-Belmonte, J. C. (2003) MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb. Nat Cell Biol 5, 499–501.

    Article  CAS  Google Scholar 

  • Kida, Y., Maeda, Y., Shiraishi, T., Suzuki, T., Ogura, T. (2004) Chick Dach1 interacts with the Smad complex and Sin3a to control AER formation and limb development along the proximo-distal axis. Development 131, 4179–4187.

    Article  CAS  Google Scholar 

  • King, J. A., Storm, E. E., Marker, P. C., Dileone, R. J., Kingsley, D. M. (1996) The role of BMPs and GDFs in development of region-specific skeletal structures. Ann N Y Acad Sci 785, 70–79.

    Article  CAS  Google Scholar 

  • Kumar, A., Godwin, J. W., Gates, P. B., Garza-Garcia, A. A., Brockes, J. P. (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318, 772–777.

    Article  CAS  Google Scholar 

  • Logan, C., Hornbruch, A., Campbell, I., Lumsden, A. (1997) The role of Engrailed in establishing the dorsoventral axis of the chick limb. Development 124, 2317–2324.

    CAS  Google Scholar 

  • Logan, M., Tabin, C. (1998) Targeted gene misexpression in chick limb buds using avian replication-competent retroviruses. Methods 14, 407–420.

    Article  CAS  Google Scholar 

  • López-Martínez, A., Chang, D. T., Chiang, C., Porter, J. A., Ros, M. A., Simandl, B. K., Beachy, P. A., Fallon, J. F. (1995) Limb-patterning activity and restricted posterior localization of the amino-terminal product of Sonic hedgehog cleavage. Curr Biol 5, 791–796.

    Article  Google Scholar 

  • Momose, T., Tonegawa, A., Takeuchi, J., Ogawa, H., Umesono, K., Yasuda, K. (1999) Efficient targeting of gene expression in chick embryos by microelectroporation. Dev Growth Differ 41, 335–344.

    Article  CAS  Google Scholar 

  • Morgan, B. A., Fekete, D. M. (1996) Manipulating gene expression with replication-competent retroviruses. Methods Cell Biol (51), 185–218.

    Article  CAS  Google Scholar 

  • Morgan, B. A., Izpisúa-Belmonte, J. C., Duboule, D., Tabin, C. J. (1992) Targeted misexpres-sion of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 358, 236–239.

    Article  CAS  Google Scholar 

  • Niwa, H., Yamamura, K., Miyazaki, J. (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199.

    Article  CAS  Google Scholar 

  • Ogura, T. (2002) In vivo electroporation: a new frontier for gene delivery and embryology. Differentiation 70, 163–171.

    Article  CAS  Google Scholar 

  • Ohuchi, H., Nakagawa, T., Yamamoto, A., Araga, A., Ohata, T., Ishimaru, Y., Yoshioka, H., Kuwana, T., Nohno, T., Yamasaki, M., Itoh, N., Noji, S. (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124, 2235–2244.

    CAS  Google Scholar 

  • Parr, B. A., McMahon, A. P. (1995) Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374, 350–353.

    Article  CAS  Google Scholar 

  • Pearse, R. V., 2nd, Scherz, P. J., Campbell, J. K., Tabin, C. J. (2007) A cellular lineage analysis of the chick limb bud. Dev Biol 310, 388–400.

    Article  CAS  Google Scholar 

  • Pearse, R.V., 2nd, Tabin, C. J. (1998) The molecular ZPA. J Exp Zool 282, 677–690.

    Article  CAS  Google Scholar 

  • Riddle, R. D., Ensini, M., Nelson, C., Tsuchida, T., Jessell, T. M., Tabin, C. (1995) Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 83, 631–640.

    Article  CAS  Google Scholar 

  • Riddle, R. D., Johnson, R. L., Laufer, E., Tabin, C. (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 31, 1401–1416.

    Article  Google Scholar 

  • Saito, D., Yonei-Tamura, S., Kano, K., Ide, H., Tamura, K. (2002) Specification and determination of limb identity: evidence for inhibitory regulation of Tbx gene expression. Development 129, 211–220.

    CAS  Google Scholar 

  • Saunders, J. W. Jr., Gasseling, M. T. (1968) “Epithelial-Mesenchymal Interractions” Fleischmajer, R., Billingham, R. F. eds., Williams and Wilkins, Baltimore, pp. 78–97.

    Google Scholar 

  • Sun, X., Mariani, F. V., Martin, G. R. (2002) Functions of FGF signalling from the apical ectoder-mal ridge in limb development. Nature 418, 501–508.

    Article  CAS  Google Scholar 

  • Suzuki, T., Hasso, S. M., Fallon, J. F. (2008) Unique SMAD1/5/8 activity at the phalanx-forming region (PFR) determines digit identity. Proc Natl Acad Sci U S A 18, 4185–4190.

    Article  Google Scholar 

  • Tabata, H., Nakajima, K. (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103, 865–872.

    Article  CAS  Google Scholar 

  • Takeuchi, J. K., Koshiba-Takeuchi, K., Matsumoto, K., Vogel-Höpker, A., Naitoh-Matsuo, M., Ogura, K., Takahashi, N., Yasuda, K., Ogura, T. (1999) Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds. Nature 398, 810–814.

    Article  CAS  Google Scholar 

  • Takeuchi, J. K., Koshiba-Takeuchi, K., Suzuki, T., Kamimura, M., Ogura, K., Ogura, T. (2003) Tbx5 and Tbx4 trigger limb initiation through activation of the Wnt/Fgf signaling cascade. Development 130, 2729–2739.

    Article  CAS  Google Scholar 

  • Zou, H., Wieser, R., Massagué, J., Niswander, L. (1997) Distinct roles of type I bone morpho-genetic protein receptors in the formation and differentiation of cartilage. Genes Dev 11, 2191–2203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Suzuki, T., Ogura, T. (2009). Electroporation into the Limb: Beyond Misexpression. In: Nakamura, H. (eds) Electroporation and Sonoporation in Developmental Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-09427-2_9

Download citation

Publish with us

Policies and ethics