Electroporation into the Limb: Beyond Misexpression

  • Takayuki Suzuki
  • Toshihiko Ogura

Limb development has been studied for over 100 years by several generations of developmental biologists. The developing limb is one of the best models with which to study pattern formation in vertebrates. We have used chick limb development to answer a simple but basic question, namely, why heterogeneous tissues are formed at correct positions and times from a homogeneous population of cells (Pearse & Tabin, 1998).

Limb development starts as two pairs of tissue bulges in the lateral plate meso-derm (LPM). These are called the forelimb and hindlimb fields (Fig. 9.1). After limb initiation, one can clearly identify three-dimensional axes in the limb buds: the proximal-distal (PD; from shoulder to fingers), dorso-ventral (DV; from back to palm), and antero-posterior (AP; from thumb to little fingers) axes. Morphological changes and differences along these three axes are determined by pattern formation during limb bud stages. Following establishment of these axes, one can visually recognize condensation of cartilages. Muscles, tendons, and neurons migrate and differentiate after cartilage formation. Because the stages and events are easily recognized morphologically and in detail, it is therefore the limb bud is an excellent model with which to study the molecular mechanisms of embryonic patterning and tissue differentiation in vertebrates.


Limb Development Lateral Plate Mesoderm Chick Limb Vitelline Artery pCAGGS Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bendall, A. J., Ding, J., Hu, G., Shen, M. M., Abate-Shen, C. (1999) Msx1 antagonizes the myo-genic activity of Pax3 in migrating limb muscle precursors. Development 126, 4965–4976.Google Scholar
  2. Kawakami, Y., Rodríguez-León, J., Koth, C. M., Büscher, D., Itoh, T., Raya, A., Ng, J. K., Esteban, C. R., Takahashi, S., Henrique, D., Schwarz, M. F., Asahara, H., Izpisúa-Belmonte, J. C. (2003) MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb. Nat Cell Biol 5, 499–501.CrossRefGoogle Scholar
  3. Kida, Y., Maeda, Y., Shiraishi, T., Suzuki, T., Ogura, T. (2004) Chick Dach1 interacts with the Smad complex and Sin3a to control AER formation and limb development along the proximo-distal axis. Development 131, 4179–4187.CrossRefGoogle Scholar
  4. King, J. A., Storm, E. E., Marker, P. C., Dileone, R. J., Kingsley, D. M. (1996) The role of BMPs and GDFs in development of region-specific skeletal structures. Ann N Y Acad Sci 785, 70–79.CrossRefGoogle Scholar
  5. Kumar, A., Godwin, J. W., Gates, P. B., Garza-Garcia, A. A., Brockes, J. P. (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318, 772–777.CrossRefGoogle Scholar
  6. Logan, C., Hornbruch, A., Campbell, I., Lumsden, A. (1997) The role of Engrailed in establishing the dorsoventral axis of the chick limb. Development 124, 2317–2324.Google Scholar
  7. Logan, M., Tabin, C. (1998) Targeted gene misexpression in chick limb buds using avian replication-competent retroviruses. Methods 14, 407–420.CrossRefGoogle Scholar
  8. López-Martínez, A., Chang, D. T., Chiang, C., Porter, J. A., Ros, M. A., Simandl, B. K., Beachy, P. A., Fallon, J. F. (1995) Limb-patterning activity and restricted posterior localization of the amino-terminal product of Sonic hedgehog cleavage. Curr Biol 5, 791–796.CrossRefGoogle Scholar
  9. Momose, T., Tonegawa, A., Takeuchi, J., Ogawa, H., Umesono, K., Yasuda, K. (1999) Efficient targeting of gene expression in chick embryos by microelectroporation. Dev Growth Differ 41, 335–344.CrossRefGoogle Scholar
  10. Morgan, B. A., Fekete, D. M. (1996) Manipulating gene expression with replication-competent retroviruses. Methods Cell Biol (51), 185–218.CrossRefGoogle Scholar
  11. Morgan, B. A., Izpisúa-Belmonte, J. C., Duboule, D., Tabin, C. J. (1992) Targeted misexpres-sion of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 358, 236–239.CrossRefGoogle Scholar
  12. Niwa, H., Yamamura, K., Miyazaki, J. (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199.CrossRefGoogle Scholar
  13. Ogura, T. (2002) In vivo electroporation: a new frontier for gene delivery and embryology. Differentiation 70, 163–171.CrossRefGoogle Scholar
  14. Ohuchi, H., Nakagawa, T., Yamamoto, A., Araga, A., Ohata, T., Ishimaru, Y., Yoshioka, H., Kuwana, T., Nohno, T., Yamasaki, M., Itoh, N., Noji, S. (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124, 2235–2244.Google Scholar
  15. Parr, B. A., McMahon, A. P. (1995) Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374, 350–353.CrossRefGoogle Scholar
  16. Pearse, R. V., 2nd, Scherz, P. J., Campbell, J. K., Tabin, C. J. (2007) A cellular lineage analysis of the chick limb bud. Dev Biol 310, 388–400.CrossRefGoogle Scholar
  17. Pearse, R.V., 2nd, Tabin, C. J. (1998) The molecular ZPA. J Exp Zool 282, 677–690.CrossRefGoogle Scholar
  18. Riddle, R. D., Ensini, M., Nelson, C., Tsuchida, T., Jessell, T. M., Tabin, C. (1995) Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 83, 631–640.CrossRefGoogle Scholar
  19. Riddle, R. D., Johnson, R. L., Laufer, E., Tabin, C. (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 31, 1401–1416.CrossRefGoogle Scholar
  20. Saito, D., Yonei-Tamura, S., Kano, K., Ide, H., Tamura, K. (2002) Specification and determination of limb identity: evidence for inhibitory regulation of Tbx gene expression. Development 129, 211–220.Google Scholar
  21. Saunders, J. W. Jr., Gasseling, M. T. (1968) “Epithelial-Mesenchymal Interractions” Fleischmajer, R., Billingham, R. F. eds., Williams and Wilkins, Baltimore, pp. 78–97.Google Scholar
  22. Sun, X., Mariani, F. V., Martin, G. R. (2002) Functions of FGF signalling from the apical ectoder-mal ridge in limb development. Nature 418, 501–508.CrossRefGoogle Scholar
  23. Suzuki, T., Hasso, S. M., Fallon, J. F. (2008) Unique SMAD1/5/8 activity at the phalanx-forming region (PFR) determines digit identity. Proc Natl Acad Sci U S A 18, 4185–4190.CrossRefGoogle Scholar
  24. Tabata, H., Nakajima, K. (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103, 865–872.CrossRefGoogle Scholar
  25. Takeuchi, J. K., Koshiba-Takeuchi, K., Matsumoto, K., Vogel-Höpker, A., Naitoh-Matsuo, M., Ogura, K., Takahashi, N., Yasuda, K., Ogura, T. (1999) Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds. Nature 398, 810–814.CrossRefGoogle Scholar
  26. Takeuchi, J. K., Koshiba-Takeuchi, K., Suzuki, T., Kamimura, M., Ogura, K., Ogura, T. (2003) Tbx5 and Tbx4 trigger limb initiation through activation of the Wnt/Fgf signaling cascade. Development 130, 2729–2739.CrossRefGoogle Scholar
  27. Zou, H., Wieser, R., Massagué, J., Niswander, L. (1997) Distinct roles of type I bone morpho-genetic protein receptors in the formation and differentiation of cartilage. Genes Dev 11, 2191–2203.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Takayuki Suzuki
    • 1
  • Toshihiko Ogura
    • 1
  1. 1.Developmental Neurobiology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversityAoba-kuJapan

Personalised recommendations