Advertisement

Supporting Strategic Product Portfolio Planning by Market Simulation

The Case of the Future Powertrain Portfolio in the Automotive Industry
  • Karsten Kieckhäfer
  • Thomas Volling
  • Thomas Stefan Spengler
Chapter

Abstract

In this paper, the authors propose a decision support for the strategic planning of the future powertrain and vehicle portfolio in the automotive industry. They use a hybrid market simulation approach for a simultaneous consideration of aggregated system and individual consumer behavior. This non-traditional simulation model allows for estimating the development of market shares of various powertrains in different vehicle size classes subject to the vehicle portfolio offered and to assumptions about consumer behavior and market environment.

Agend-Based Simulation System Dynamics Strategic Portfolio Planning Market Simulation Alternative Powertrains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. [1]
    Achtnicht, M./Bühler, G./Hermeling, C. (2008): Impact of service station networks on purchase decisions of alternative-fuel vehicles, ZEW Discussion Paper No. 08-088. Mannheim: Zentrum für Europäische Wirtschaftsforschung GmbH.Google Scholar
  2. [2]
    Adelt, B. (2003): Überlegungen zur Weiterentwicklung der Unternehmensplanung bei Volkswagen. Horváth, P./Gleich, R. (Hrsg.): Neugestaltung der Unternehmensplanung: Innovative Konzepte und erfolgreiche Praxislösungen, pp. 451–467. Stuttgart: Schäffer-Poeschel.Google Scholar
  3. [3]
    Anon (2010): A portfolio of power-trains for Europe: A fact-based analysis: the role of battery electric vehicles, plug-in hybrids, and fuel cell electric vehicles. Available: http://www.zeroemissionvehicles.eu/.
  4. [4]
    Bass, F. M. (1969): A new product growth for model consumer durables. Management Science, Vol. 15, 5, pp. 215–227.CrossRefGoogle Scholar
  5. [5]
    BenDor, T./Ford, A. (2006): Simulating a combination of feebates and scrappage incentives to reduce automobile emissions. Energy, Vol. 31, 8, pp. 1197–1214.CrossRefGoogle Scholar
  6. [6]
    Berry, S./Levinsohn, J./Pakes, A. (2004): Differentiated products demand systems from a combination of micro and macro data: The new car market. Journal of Political Economy, Vol. 112, 1, pp. 68–105.CrossRefGoogle Scholar
  7. [7]
    Book, M./Groll, M./Mosquet, X./Rizoulis, D./Sticher, G. (2009): The Comeback of the electric car? How real, how soon, and what must happen next. Available: http://www.bcg.com/documents/file15404.pdf.
  8. [8]
    Borshchev, A./Filippov, A. (2004): From system dynamics and discrete event to practical agent based modeling: reasons, techniques, tools, in: Kennedy, M./Winch, G. W./Langer, R. S./Rowe, J. I./Janni, J. M. (Eds.): Proceedings of the 22nd International Conference of the System Dynamics Society. Oxford.Google Scholar
  9. [9]
    Bosshardt M./Ulli-Beer, S./Gassmann, F./Wokaun, A. (2008): The effect of multi-incentive policies on the competition of drivetrain technologies. Dangerfield, B. C. (Ed): Proceedings of the 26th International Conference of the System Dynamics Society. Athens.Google Scholar
  10. [10]
    Brownstone, D./Bunch, D./Train K. E. (2000): Joint mixed logit models of stated and revealed preferences for alternative fuel vehicles. Tranportation Research B, Vol. 34, 5, pp. 315–338.CrossRefGoogle Scholar
  11. [11]
    Bunch, D. S./Bradely, M./Golob, T. F./Kitamura, R./Occhiuzzo, G. P. (1993): Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project. Transportation Research A, Vol. 27, 3, pp. 237–253.CrossRefGoogle Scholar
  12. [12]
    CARB (2010): Low-Emission Vehicle Program. Available: http://www.arb.ca.gov/msprog/levprog/levprog.htm.
  13. [13]
    Cooper, L. G. (2003): Market-Share Models. Eliashberg, J./Lilien, G. J. (Eds.): Handbook in Operations Research and Management Science: Marketing, pp. 259–314. Amsterdam: North-Holland.Google Scholar
  14. [14]
    De Haan, P./Mueller, M. G./Scholz, R. W. (2009): How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars: Part I: Forecasting effects of feebates based on energy-efficiency. Energy Policy, Vol. 37, 3, pp. 1083–1094.CrossRefGoogle Scholar
  15. [15]
    Diez, W. (1990): Modellzyklen als produktpolitisches Entscheidungsproblem: Erfahrungen und Perspektiven in der deutschen Automobilindustrie. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung (Zfbf), Vol. 42, 3, pp. 263–275.Google Scholar
  16. [16]
    Eggert, W. (2003): Nachfragemodellierung und -prognose zur Unterstützung der langfristigen Absatzplanung am Beispiel der deutschen Automobilindustrie, Dissertation. Karlsruhe: Universität Karlsruhe.Google Scholar
  17. [17]
    Eliashberg, J./Lilien, G. L. (2003): Mathematical marketing models: some historical perspectives and future projections. Eliashberg, J./Lilien, G. J. (Eds.): Handbook in Operations Research and Management Science: Marketing, pp. 3–23. Amsterdam: North-Holland.Google Scholar
  18. [18]
    EU (2010): Reducing CO2 emissions from passenger cars. Available: http://ec.europa.eu/clima/policies/transport/vehicles/cars_en.htm.
  19. [19]
    Forrester, J. W. (1961): Industrial dynamics. Cambridge: MIT Press.Google Scholar
  20. [20]
    Friedrich, H. E. (2010): Market shares of various powertrains: scenarios till 2030. ATZ autotechnology, Vol. 10, 4, pp. 47–51.Google Scholar
  21. [21]
    Gilbert, N./Troitzsch, K. G. (2005): Simulation for the social scientist, 2nd edition. Maidenhead: open University Press.Google Scholar
  22. [22]
    Grube, R. (2003): Das global führende Automobilunternehmen DaimlerChrysler: Strategieentwicklung und deren konsequente Umsetzung. Hungenberg, H./Meffert, J. (Hrsg.): Handbuch Strategisches Management, pp. 89–104. Wiesbaden: Gabler.Google Scholar
  23. [23]
    Henderson, B. D. (1984): The application and misapplication of the experience curve. Journal of Business Strategy, Vol. 4, 3, pp. 3–9.CrossRefGoogle Scholar
  24. [24]
    Hill, K./Edwards, M./Szakaly, S. (2007): How automakers plan their products: A primer for policy makers on automotive industry business planning. Available: http://www.cargroup.org/documents/ProductDevelopmentFinalReport7-30.a_000.pdf.
  25. [25]
    IPCC (2007): IPCC Fourth Assessment Report: Climate Change 2007. Available: http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml.
  26. [26]
    Janssen, A./Lienin, S. F./Gassmann, F./Wokaun, A. (2006): Model aided policy development for the market penetration of natural gas vehicles in Switzerland. Transportation Research A, Vol. 40, 4, pp. 316–333.Google Scholar
  27. [27]
    Kieckhäfer, K./Walther, G./Axmann, J./Spengler, T. (2009): Integrating Agent-based Simulation and System Dynamics to support product strategy decisions in the automotive industry. Rossetti, M. D./Hill, R. R./Johansson, B./Dunkin, A./Ingalls R. G. (Eds.): Proceedings of the 2009 Winter Simulation Conference, pp. 1433–1443. Austin, Texas.Google Scholar
  28. [28]
    Law, A. M./Kelton, W. D. (2000): Simulation modeling and analysis, 3rd edition. Singapore: McGraw-Hill.Google Scholar
  29. [29]
    Lilien, G. L./Kotler, P./Moorthy, K. S. (1992): Marketing Models. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
  30. [30]
    Mahajan, V./Muller, E./Bass, F. M. (2003): New-product diffusion models. Eliashberg, J./Lilien, G. J. (Eds.): Handbook in Operations Research and Management Science: Marketing, pp. 3–23. Amsterdam: North-Holland.Google Scholar
  31. [31]
    Massy, W. F./Montgomery, D. B./Morrison, D. G. (1970): Stochastic models of buying behavior. Cambridge: MIT Press.Google Scholar
  32. [32]
    Meyer, P. E./Winebrake, J. J. (2009): Modeling technology diffusion of complementary goods: the case of hydrogen vehicles and refueling infrastructure. Technovation, Vol. 29, 2, pp. 77–91.CrossRefGoogle Scholar
  33. [33]
    Mueller, M. G./de Haan, P. (2006): Autokaufentscheid: Treue zur Marke, zum Fahrzeugsegment, zur Treibstoffart und zum Getriebetyp: Deskriptive Auswertung von Transaktionsdaten. Berichte zum Schweizer Autokaufverhalten Nr. 10. Zürich: ETH Zürich.Google Scholar
  34. [34]
    Mueller, M. G./De Haan, P. (2009): How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars: Part I: Model structure, simulation of bounded rationality, and model validation. Energy Policy, Vol. 37, 3, pp. 1072–1082.CrossRefGoogle Scholar
  35. [35]
    Niederländer, F. (2000): Dynamik in der internationalen Produktpolitik von Automobilherstellern. Wiesbaden: Gabler.CrossRefGoogle Scholar
  36. [36]
    NHTSA (2011): CAFE - Fuel Economy. Available: http://www.nhtsa.gov/fuel-economy.
  37. [37]
    OECD/IEA (2008): Word Energy Outlook 2008, Paris: International Energy Agency 2008.Google Scholar
  38. [38]
    Peters, A./de Haan, P. (2006): Der Autokäufer: seine Charakteristika und Präferenzen: Ergebnisbericht im Rahmen des Projekts „Entscheidungsfaktoren beim Kauf treibstoff-effizienter Neuwagen“. Berichte zum Schweizer Autokaufverhalten Nr. 11. Zürich: ETH Zürich.Google Scholar
  39. [39]
    Pil, F. K./Holweg, M. (2004): Linking product variety to order-fulfillment strategies. Interfaces, Vol. 34, 5, 394–403.CrossRefGoogle Scholar
  40. [40]
    Raasch, C./Schneider, A. S./Friedl, G. (2007): Strategic portfolio planning in industries with long R&D cycles and interrelated product offerings: a practical approach to optimization. International Journal of Technology intelligence and Planning, Vol. 3, 3, pp. 271–291.CrossRefGoogle Scholar
  41. [41]
    Schneider, A. (2006): Die strategische Planung der Produktportfolios bei Automobilherstellern: Konzeption eines Instruments zur Bewertung des Cycle-Plans. Baden-Baden: Nomos.Google Scholar
  42. [42]
    Sterman, J. (2000): Business dynamics: systems thinking and modeling for a complex world. Boston: Irwin/McGraw-Hill.Google Scholar
  43. [43]
    Struben, J./Sterman J. D. (2008): Transition challenges for alternative fuel vehicle and transportation systems. Environment and Planning B: Planning and Design, Vol. 35, 6, pp. 1070–1097.CrossRefGoogle Scholar
  44. [44]
    Teichert, T./Shehu, E. (2010): Investigating research streams of conjoint analysis: a bibliometric study. Business Research, Vol. 3, 1, pp. 49–68.Google Scholar
  45. [45]
    Train, K. E. (2009): Discrete choice methods with simulation, 2nd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. [46]
    Train, K. E./Winston, C. (2007): Vehicle choice behavior and the declining market share of U.S. automakers. International Economy Review, Vol. 48, 4, pp. 1469–1496.CrossRefGoogle Scholar
  47. [47]
    UNFCCC (2011): Greenhouse Gas Inventory Data. Available: http://unfccc.int/ghg_data/items/php.
  48. [48]
    Urban, G. L./Hauser, J. R./Roberts, J. R. (1990): Prelaunch forecasting of new automobiles. Management Science, Vol. 36, 4, pp. 401–421.CrossRefGoogle Scholar
  49. [49]
    Urban, G. L./Weinberg, B. D./Hauser, J. R. (1996): Premarket forecasting of really-new products. Journal of Marketing, Vol. 60, 1, pp. 47–60.CrossRefGoogle Scholar
  50. [50]
    Walther, G./Wansart, J./Kieckhäfer, K./Schnieder, E./Spengler, T. S. (2010): Impact assessment in the automotive industry: mandatory market introduction of alternative powertrain technologies. System Dynamics Review, Vol. 26, 3, pp. 239–261.CrossRefGoogle Scholar
  51. [51]
    Watanabe, C./Ane, B. K. (2004): Constructing a virtuous cycle of manufacturing agility: concurrent roles of modularity in improving agility and reducing lead time. Technovation, Vol. 24, 7, pp. 573–583.CrossRefGoogle Scholar
  52. [52]
    Wiedmann, K.-P./Löffler, R. (1989): Portfolio-Simulationen und Portfolio-Planspiele als Unterstützungssysteme der strategischen Früherkennung. Raffée, H./Wiedmann, K.-P. (Eds.): Strategisches Marketing, 2nd edition, pp. 419–462. Stuttgart: Poeschel.Google Scholar
  53. [53]
    Wissema, J. G. (1982): Trends in technology forecasting. R&D Management, Vol. 12, 1, pp. 27–36.CrossRefGoogle Scholar

Copyright information

© Gabler Verlag | Springer Fachmedien Wiesbaden 2012

Authors and Affiliations

  • Karsten Kieckhäfer
    • 1
  • Thomas Volling
    • 1
  • Thomas Stefan Spengler
    • 1
  1. 1.Technische Universität BraunschweigBraunschweigGermany

Personalised recommendations