Advertisement

Viren mit einzelsträngigem, segmentierten RNA-Genom in Negativstrangorientierung

  • Susanne Modrow
  • Dietrich Falke
  • Uwe Truyen
  • Hermann Schätzl
Chapter
  • 9.8k Downloads

Zusammenfassung

Bis heute sind drei Virusfamilien bekannt, deren Vertreter ein RNA-Genom mit negativer Orientierung besitzen, das in den infektiösen Viruspartikeln nicht als ein kontinuierliches Molekül, sondern in mehreren Segmenten vorliegt. Es handelt sich um die Arenaviridae, die Bunyaviridae und die Orthomyxoviridae. Ähnlich wie die Mononegavirales (▸ Kapitel 15) benötigen auch sie für die Synthese der mRNA und für die Replikation ein spezielles Enzym, das zusammen mit weiteren Virus-komponenten bei der Infektion in die Zelle gelangt: die RNA-abhängige RNA-Polymerase. Ein in Segmenten vorliegendes Genom ermöglicht den Viren die Bildung von Reassortanten. Hier werden die RNA-Moleküle bei Doppelinfektionen von Zellen mit unterschiedlichen Virus-typen während der Replikation und der Morphogenese gemischt. Die Nachkommenviren können so Neukombinationen der RNA-Segmente und damit neue Eigenschaften erhalten. Besonders häufig und gut untersucht ist dieser Mechanismus, der als antigenic shift bezeichnet wird, bei den Influenza-A-Viren, den Erregern der Virus-influenza oder echten Grippe (▸ Abschnitt 16.3).

16.1.6 Weiterführende Literatur

  1. Barton, L. L.; Mets, M. B. Congenital lymphocytic choriomeningitis virus infection: decade of rediscovery. In: Clin. Infect. Dis. 33 (2001) S. 370–374.PubMedCrossRefGoogle Scholar
  2. Battegay, M.; Meskopleidis, D.; Rahentulla, A.; Hengartner, H.; Mak, T. W.; Zinkernagel, R. Enhanced establishment of a virus carrier state in adult CD4 + T-cell deficient mice. In: J. Virol. 68 (1994) S. 4700–4704.PubMedGoogle Scholar
  3. Borden, K. L. B.; Campbelldwyer, E. J.; Carlile, G. W.; Djavani, M.; Salvato, M. S. Two RING finger proteins, the oncoprotein PML and arenavirus Z protein, colocalize with the nuclear fraction of ribosomal P proteins. In: J. Virol. 72 (1998) S. 3819–3826.PubMedGoogle Scholar
  4. Bowen, M. D.; Rollin, P. E.; Ksiazek, T. G.; Hustad, H. L.; Bausch, D. G.; Demby, A. H.; Bajani, M. D.; Peters, C. J.; Nichol, S. T. Genetic diversity among Lassa virus strains. In: J. Virol. 74 (2000) 6992–7004.PubMedCrossRefGoogle Scholar
  5. Butz, E. A.; Southern, P. J. Lymphocytic choriomeningitis virus-induced immune dysfunction: Induction of and recovery from T-cell anergy in adult infected mice. In: J. Virol. 68 (1994) S. 8477–8480.PubMedGoogle Scholar
  6. Cao, W.; Henry, M. D.; Borrow, P.; Yamada, H.; Elder, J. H.; Ravkov, E. V.; Nichol, S. T.; Compans, R. W.; Campell, K. P.; Oldstone, M. B. A. Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and lassa fever virus. In: Science 282 (1998) S. 2079–2081.PubMedCrossRefGoogle Scholar
  7. Centers for Disease Control and Prevention. Lymphocytic Choriomeningitis Virus Transmitted Through Solid Organ Transplantation — Massachusetts, 2008. In: MMWR 57 (2008) 799–801.Google Scholar
  8. Charrel, R. N.; de Lamballerie, X. Arenaviruses other than Lassa virus. In: Antiviral Res. 57 (2003) S. 89–100.PubMedCrossRefGoogle Scholar
  9. Cornu, T. I.; Feldmann, H.; de la Torre, J.C. Cells expressing the RING finger Z protein are resistant to arenavirus infection. In: J. Virol. 78 (2004) S. 2979–2983.PubMedCrossRefGoogle Scholar
  10. Eichler, R.; Lenz, O.; Strecker, T.; Eickmann, M.; Klenk, H. D.; Garten, W. Identification of Lassa virus glycoprotein signal peptide as a transacting maturation factor. In: EMBO Rep. 4 (2003) S. 1084–1088.PubMedCrossRefGoogle Scholar
  11. Eichler, R.; Strecker, T.; Kolesnikova, L.; ter Meulen, J.; Weissenhorn, W.; Becker, S.; Klenk, H. D.; Garten, W.; Lenz, O. Characterization of the Lassa virus matrix protein Z: electron microscopic study of virus-like particles and interaction with the nucleoprotein (NP). In: Virus Res. 100 (2004) S. 249–255.PubMedCrossRefGoogle Scholar
  12. Eschli, B.; Quirin, K.; Wepf, A.; Weber, J.; Zinkernagel, R.; Hengartner, H. Identification of an N-Terminal Trimeric Coiled-Coil Core within Arenavirus Glycoprotein 2 Permits Assignment to Class I Viral Fusion Proteins. In: J. Virol. 80 (2006) S. 5897–5907.PubMedCrossRefGoogle Scholar
  13. Fischer, S. A.; Graham, M. B.; Kuehnert, M. J.; Kotton, C. N.; Srinivasan, A.; Marty, F. M.; Comer, J. A.; Guarner, J.; Paddock, C. D.; DeMeo, D. L.; Shieh, W. J.; Erickson, B. R.; Bandy, U.; DeMaria, A. Jr.; Davis, J. P.; Delmonico, F. L.; Pavlin, B.; Likos, A.; Vincent, M. J.; Sealy, T. K.; Goldsmith, C. S.; Jernigan, D. B.; Rollin, P. E.; Packard, M. M.; Patel, M.; Rowland, C.; Helfand, R. F.; Nichol, S. T.; Fishman, J. A.; Ksiazek, T.; Zaki, S. R. LCMV in Transplant Recipients Investigation Team. Transmission of lymphocytic choriomeningitis virus by organ transplantation. In: N. Engl. J. Med. 354 (2006) S. 2235–2249.PubMedCrossRefGoogle Scholar
  14. Fischer, S. A. Emerging viruses in transplantation: there is more to infection after transplant than CMV and EBV. In: Transplantation 86 (2008) S. 1327–1339.PubMedCrossRefGoogle Scholar
  15. Günther, S.; Emmerich, P.; Laue, T.; Kühle, O.; Asper, M.; Jung, A.; Grewing, T.; ter Meulen, J.; Schmitz, H. Imported lassa fever in germany: Molecular characterization of a new lassa virus strain. In: Emerging Infect. Diseases 6 (2000) S. 466–476.CrossRefGoogle Scholar
  16. Kunz, S.; Rojek, J. M.; Perez, M.; Spiropoulou, C. F.; Oldstone, M. B. Characterization of the interaction of lassa fever virus with its cellular receptor alpha-dystroglycan. In: J. Virol. 79 (2005) S. 5979–5987.PubMedCrossRefGoogle Scholar
  17. Lisieux, T.; Coimbra, M.; Nassar, E. S.; Burattini, M. N.; de Souza, T. L.; Ferreira, I.; Rocco, I. M.; da Rose, A. P.; Vasconcelos, P. F.; Pinheiro, F. P. New arenavirus isolated in brazil. In: Lancet 343 (1994) S. 391–392.PubMedCrossRefGoogle Scholar
  18. Meyer, B. J.; Southern P. J. Sequence heterogenicity in the termini of lymphocytic choriomeningitis virus genomic and antigenomic RNAs. In: J. Virol. 68 (1994) S. 7659–7664.PubMedGoogle Scholar
  19. Ou, R.; Zhou, S.; Huang, L.; Moskophidis, D. Critical role for Alpha/Beta and Gamma interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T-cells. In: J. Virol. 75 (2001) 8407–84023.PubMedCrossRefGoogle Scholar
  20. Palacios, G.; Druce, J.; Du, L.; Tran, T.; Birch, C.; Briese, T.; Conlan, S.; Quan, P. L.; Hui, J.; Marshall, J.; Simons, J. F.; Egholm, M.; Paddock, C. D.; Shieh, W. J.; Goldsmith, C. S.; Zaki, S. R.; Catton, M.; Lipkin, W. I. A new arenavirus in a cluster of fatal transplant-associated diseases. In: N. Engl. J. Med. 358 (2008) S. 991–998.PubMedCrossRefGoogle Scholar
  21. Perez, M.; Greenwald, D. L.; de la Torre, J. C. Myristoylation of the RING finger Z protein is essential for arenavirus budding. In: J. Virol. 78 (2004) S. 11443–11448.PubMedCrossRefGoogle Scholar
  22. Perez, M.; Craven, R. C.; de la Torre, J. C. The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. In: Proc. Natl. Acad. Sci. USA 100 (2003) S. 12978–12983.PubMedCrossRefGoogle Scholar
  23. Polyak, S. J.; Zheng, S.; Harnish, D. G. 5′termini of pichinde arenavirus S RNAs and mRNAs contain nontemplated nucleotides. In: J. Virol. 69 (1995) S. 3211–3215.PubMedGoogle Scholar
  24. Rambukkana, A.; Kunz, S.; Min, J.; Campbell, K.P.; Oldstone, M.B. Targeting Schwann cells by nonlytic arenaviral infection selectively inhibits myelination. In: Proc. Natl. Acad. Sci. USA 100 (2003) S. 16071–16076.PubMedCrossRefGoogle Scholar
  25. Smelt, S. C.; Borrow, P.; Kunz, S.; Cao, W.; Tishon, A.; Lewicki, H.; Campell, K. P.; Oldstone, M. B. A. Differences in affinity of binding of lymphocytic choriomeningitis virus strains to the cellular receptor α-dystroglycan correlate with viral tropism and disease kinetics. In. J. Virol. 75 (2001) S. 448–457.PubMedCrossRefGoogle Scholar
  26. Strecker, T.; Eichler, R.; Meulen, J.; Weissenhorn, W.; Klenk, H.D.; Garten, W.; Lenz, O. Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles. In: J. Virol. 77 (2003) S. 10700–10705.PubMedCrossRefGoogle Scholar
  27. Urata, S.; Noda, T.; Kawaoka, Y.; Yokosawa, H.; Yasuda, J. Cellular factors required for Lassa virus budding. In: J. Virol. 80 (2006) S. 4191–4195.PubMedCrossRefGoogle Scholar
  28. Vieth, S.; Torda, A.E.; Asper, M.; Schmitz, H.; Gunther, S. Sequence analysis of L RNA of Lassa virus. In: Virology 318 (2004) S. 153–168.PubMedCrossRefGoogle Scholar
  29. Weaver, S. C.; Salas, R. A.; Manzione, N. de; Fulhorst, C. F.; Travasos da Rosa, A. P.; Duno, G.; Utrera, A.; Mills, J. N.; Ksiazek, T. G.; Tovar, D.; Guzman, H.; Kang, W.; Tesh, R. B. Extreme genetic diversity among Pirital virus (Arenaviridae) isolates from Western Venezuela. In: Virol. 285 (2001) 110–118.CrossRefGoogle Scholar
  30. Zinkernagel, R. M.; Hengartner, H. Virally induced Immunosuppression. In: Curr. Opin. Immunol. 4 (1992) S. 408–412.PubMedCrossRefGoogle Scholar

Weiterführende Literatur

  1. Accardi, L.; Prehaud, C.; Di Bonito, P.; Mochi, S.; Bouloy, M.; Giorgi, C. Activity of Toscana and Rift Valley fever virus transcription complexes and heterologous templates. In: J. Gen. Virol. 82 (2001) S. 781–785.PubMedGoogle Scholar
  2. Alff, P. J.; Gavrilovskaya, I. N.; Gorbunova, E.; Endriss, K.; Chong, Y.; Geimonen, E.; Sen, N.; Reich, N.C.; Mackow, E. R. The pathogenic NY-1 hantavirus G1 cytoplasmic tail inhibits RIG-I-and TBK-1-directed interferon responses. In: J. Virol. 80 (2006) S. 9676–9686.PubMedCrossRefGoogle Scholar
  3. Bird, B.; Albarino, C. G.; Hartman, A. L.; Erickson, B. R.; Ksiazek, T. G.; Nichol, S. T. Rift Valley Fever Virus Lacking the NSs and NSm Genes Is Highly Attenuated, Confers Protective Immunity from Virulent Virus Challenge, and Allows for Differential Identification of Infected and Vaccinated Animals. In: J. Virol. 82 (2008) S. 2681–2691.PubMedCrossRefGoogle Scholar
  4. Blakqori, G.; Weber, F. Efficient cDNA-based rescue of La Crosse bunyaviruses expressing or lacking the nonstructural protein NSs. In: J. Virol. 79 (2005) S. 10420–10428.PubMedCrossRefGoogle Scholar
  5. Billecocq, A.; Spiegel, M.; Vialat, P.; Kohl, A.; Weber, F.; Bouloy, M.; Haller, O. NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. In: J. Virol. 78 (2004) S. 9798–9806.PubMedCrossRefGoogle Scholar
  6. Bouloy, M.; Janzen, C.; Vialat, P.; Khun, H.; Pavlovic, J.; Huerre, M.; Haller, O. Genetic evidence for an interferon-antagonistic function of Rift Valley Fever virus nonstructural protein NSs. In: J. Virol. 75 (2001) S. 1371–1377.PubMedCrossRefGoogle Scholar
  7. Deyde, V. M.; Rizvanov, A. A.; Chase, J.; Otteson, E. W.; St Jeor, S. C. Interactions and trafficking of Andes and Sin Nombre Hantavirus glycoproteins G1 and G2. In: Virology 331 (2005) S. 307–315.PubMedCrossRefGoogle Scholar
  8. Castillo, C., Nicklas, C., Mardones, J., Ossa, G. Andes Hantavirus as possible cause of disease in travellers to South America. In: Travel Med. Infect. Dis. 5 (2007) S. 30–34.PubMedCrossRefGoogle Scholar
  9. Fontana, J.; López-Montero, N.; Elliott, R. M.; Fernández, J. J.; Risco C. The unique architecture of Bunyamwera virus factories around the Golgi complex. In: Cell Microbiol. 10 (2008) S. 2012–2028.PubMedCrossRefGoogle Scholar
  10. Honig, J. E.; Osborne, J. C.; Nichol, S. T. Crimean-Congo hemorrhagic fever virus genome L RNA segment and encoded protein. In: Virology 321 (2004) S. 29–35.PubMedCrossRefGoogle Scholar
  11. Ikegami, T.; Won, S.; Peters, C. J.; Makino, S. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. In: J. Virol. 80 (2006) S. 2933–2940.PubMedCrossRefGoogle Scholar
  12. Kaukinen, P.; Vaheri, A.; Plyusnin, A. Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties. In: Arch. Virol. 150 (2005) S. 1693–1713.PubMedCrossRefGoogle Scholar
  13. Khaiboullina, S. F.; Rizvanov, A. A.; Deyde, V. M.; St Jeor, S. C. Andes virus stimulates interferon-inducible MxA protein expression in endothelial cells. In: J. Med. Virol. 75 (2005) S. 267–275.PubMedCrossRefGoogle Scholar
  14. Kochs, G.; Janzen C.; Hohenberg, H.; Haller, O. Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. In: Proc. Natl. Acad. Sci. USA 99 (2002) S. 3153–3158.PubMedCrossRefGoogle Scholar
  15. Kohl, A.; Lowen, A. C.; Leonard, V. H.; Elliott, R.M. Genetic elements regulating packaging of the Bunyamwera orthobunya-virus genome. In: J. Gen. Virol. 87 (2006) S. 177–187.PubMedCrossRefGoogle Scholar
  16. Kukkonen, S. K.; Vaheri, A.; Plyusnin, A. L protein, the RNA-dependent RNA polymerase of hantaviruses. In: Arch. Virol. 150 (2005) S. 533–556.PubMedCrossRefGoogle Scholar
  17. Maes, P.; Clement, J.; Gavrilovskaya, I.; Van Ranst, M. Hantaviruses: immunology, treatment, and prevention. In: Viral Immunol. 17 (2004) S. 481–497.PubMedCrossRefGoogle Scholar
  18. Martinez, V. P.; Bellomo, C.; San Juan, J.; Pinna, D.; Forlenza, R.; Elder, M.; Padula, P. J. Person-to-person transmission of Andes virus. In: Emerg. Infect. Dis. 11 (2005) S. 1848–1853.PubMedGoogle Scholar
  19. Matsuoka, Y.; Chen, S. Y.; Compans, R. W. A signal for golgi retention in the bunyavirus G1 glycoprotein. In: J. Bio. Chem. 269 (1994) S. 22565–22573.Google Scholar
  20. Meyer, B. J.; Schmaljohn, C. S. Persistent hantavirus infections: charactersitics and mechanisms. In: Trends in Microbiol. 8 (2000) S. 61–67.CrossRefGoogle Scholar
  21. Medina, R.A.; Mirowsky-Garcia, K.; Hutt, J.; Hjelle, B. Ribavirin, human convalescent plasma and anti-beta3 integrin antibody inhibit infection by Sin Nombre virus in the deer mouse model. In: J. Gen. Virol. 88 (2007) S. 493–505.PubMedCrossRefGoogle Scholar
  22. Mir, M.A.; Panganiban, A.T. Characterization of the RNA chaperone activity of hantavirus nucleocapsid protein. In: J. Virol. 80 (2006) S. 6276–6285.PubMedCrossRefGoogle Scholar
  23. Mir, M. A.; Duran, W.A.; Hjelle, B. L.; Ye, C.; Panganiban, A. T. Storage of cellular 5′ mRNA caps in P bodies for viral capsnatching. In: Proc. Natl. Acad. Sci. USA 105 (2008) S. 19294–19299.PubMedCrossRefGoogle Scholar
  24. Mir, M. A.; Panganiban, A. T. A protein that replaces the entire cellular eIF4F complex. In: EMBO J. 27 (2008) S. 3129–3139.PubMedCrossRefGoogle Scholar
  25. Mou, D. L.; Wang, Y. P.; Huang, C. X.; Li, G. Y.; Pan, L.; Yang, W. S.; Bai, X. F. Cellular entry of Hantaan virus A9 strain: specific interactions with beta3 integrins and a novel 70kDa protein. In: Biochem. Biophys. Res. Commun. 339 (2006) S. 611–617.PubMedCrossRefGoogle Scholar
  26. Nichol, S. T.; Spiropoulou, C. F.; Morzunov, S.; Rollin, P. E.; Ksiazek, T. G.; Feldmann, H.; Sanchez, A.; Childs, J.; Zaki, S.; Peters, C. J. Genetic identification of a hantavirus associated with an outbreak of acute respiatory illness. In: Science 262 (1993) S. 914–917.PubMedCrossRefGoogle Scholar
  27. Shi, X.; Kohl A.; Leonard, V. H.; Li P.; McLees, A.; Elliott, R. M. Requirement of the N-terminal region of orthobunyavirus nonstructural protein NSm for virus assembly and morphogenesis. In: J. Virol. 80 (2006) S. 8089–8099.PubMedCrossRefGoogle Scholar
  28. Soldan, S. S.; Plassmeyer, M. L.; Matukonis, M. K.; Gonzalez-Scarano, F. La Crosse virus nonstructural protein NSs counteracts the effects of short interfering RNA. In: J. Virol. 79 (2005) S. 234–244.PubMedCrossRefGoogle Scholar
  29. Spiropoulou, C. F.; Morzunov, S.; Feldmann, H.; Sanchez, A.; Peters, C. J.; Nichol, S. T. Genome structure and variability of a virus causing hantavirus pulmonary syndrome. In: Virology 200 (1994) S. 715–723.PubMedCrossRefGoogle Scholar
  30. Swanepoel, R.; Coetzer, J. A. W. Rift Valley Fever. In: Coetzer, J. A. W.; Thomson, G. R.; Tustin, R. C. (Hrsg.) Infectious Diseases of Livestock with special reference to Southern Africa. Oxford (Oxford University Press) 1994, S. 688–717.Google Scholar
  31. Weber, F.; Bridgen, A.; Fazakerley, J. K.; Streitenfeld, H.; Kessler, N.; Randall, R. E.; Elliott, R. M. Bunyamwera bunyavirus nonstructural protein NSs counteracts the induction of alpha/beta interferon. In: J. Virol. 76 (2002) S. 7949–7955.PubMedCrossRefGoogle Scholar
  32. Weber, F.; Dunn, E. F.; Bridgen, A.; Elliott, R. M. The Bunyamwera virus nonstructural protein NSs inhibits viral RNA synthesis in a minireplicon system. In: Virology 281 (2001) S. 67–74.PubMedCrossRefGoogle Scholar
  33. Zöller, L.; Faulda, M.; Meisl, H.; Ruh, B.; Kimmig, P.; Schelling, U.; Zeier, M.; Kulzer, P.; Becker, C.; Roggendorf, M.; Bautz, E.K. F.; Krüger, D. H.; Darai, G. Seroprevalence of hantavirus antibodies in germany as determined by a new recombinant enzyme immunoassay. In: Eur. J. Clin. Microbiol. 14 (1995) S. 305–313.CrossRefGoogle Scholar

Weiterführende Literatur

  1. Bullough, P. A.; Hughson, F. M.; Skehel, J. J.; Wiley, D. C. Structure of influenza virus hemagglutinin at the pH of membrane fusion. In: Nature 371 (1994) S. 37–43.PubMedCrossRefGoogle Scholar
  2. Chen, W.; Calvo, P. A.; Malide, D.; Gibbs, Y.; Schubert, U.; Bacik, J.; Basta, S.; O’Neill, R.; Schickli, J.; Paleso, P.; Henklein, P.; Bennink, J. R.; Yewdell, J. W. A novel influenza A virus mitochondrial protein that induces cell death. In: Nature Medicine 7 (2001) S. 1306–1312.PubMedCrossRefGoogle Scholar
  3. Cohen, J. Pandemic influenza. Straight from the pig’s mouth: swine research with swine influenzas. In: Science 325 (2009) S. 140–141.PubMedCrossRefGoogle Scholar
  4. Cohen, J.; Enserink M. Swine flu. After delays, WHO agrees: the 2009 pandemic has begun. In: Science 324 (2009) S. 1496–1497.PubMedCrossRefGoogle Scholar
  5. Conenello, G. M.; Palese P. Influenza A virus PB1-F2: a small protein with a big punch. In: Cell Host Microbe 2 (2007) S. 207–209.PubMedCrossRefGoogle Scholar
  6. Conenello, G. M.; Zamarin, D.; Perrone, L. A.; Tumpey, T.; Palese, P. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. In: PLoS Pathog. 3 (2007) S. 1414–1421.PubMedCrossRefGoogle Scholar
  7. Crawford, P. C.; Dubovi, E. J.; Castleman, W. L.; Stephenson, I.; Gibbs, E. P. J.; Chen, L.; Smith, C.; Hill, R. C.; Ferro, P.; Pompey, J.; Bright, R. A.; Medina, M.-J.; Influenza Virus Genomics Group; Johnson, C. M.; Olsen, C. W.; Cox, N. J.; Klimov, A. I.; Katz, J. M.; Donis, R. O. Transmission of equine influenza virus to dogs. In: Science 310 (2005) S. 482–485.PubMedCrossRefGoogle Scholar
  8. Diebold, S. S.; Kaisho, T.; Hemmi, H.; Akira, S.; Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. In: Science 303 (2004) S. 1529–1531.PubMedCrossRefGoogle Scholar
  9. Dowdle, W. R. Influenza A virus revisited. In: Bull. World Health Organ. 77 (1999) S. 820–828.PubMedGoogle Scholar
  10. Gabriel, G.; Herwig, A.; Klenk, H. D. Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. In: PLoS Pathog. 4 (2008) e11.PubMedCrossRefGoogle Scholar
  11. Garcia-Robles, I.; Akarsu, H.; Müller, C. W.; Ruigrok, R. W.; Baudin, F. Interaction of influenza virus proteins with nucleosomes. In: Virology 332 (2005) S. 329–336.PubMedCrossRefGoogle Scholar
  12. Garcia-Sastre, A. Inhibition of interferone-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses: In: Virology 279 (2001) S. 375–384.PubMedCrossRefGoogle Scholar
  13. Fouchier, R. A. M.; Munster, V.; Wallenstein, A.; Bestebroer, T. M.; Herfst, S.; Smith, D.; Rimmelzwaan, G. F.; Olsen, B.; Osterhaus, A. D. M. E. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from blackheaded gulls. In: J. Virol. 79 (2005) S. 2814–2822.PubMedCrossRefGoogle Scholar
  14. Haller, O.; Kochs, G. Thogotovirus. In: Tidona, C. A.; Darai, G. The Springer Index of Viruses. Berlin, Heidelberg, New York (Springer-Verlag) 2002, S. 615–619.CrossRefGoogle Scholar
  15. Haller, O.; Frese, M; Kochs, G. Mx proteins: mediators of innate resistance to RNA viruses. In: Rev. Sci. Tech. 17 (1998) S. 220–230.PubMedGoogle Scholar
  16. Hara, K.; Shiota, M.; Kido, H.; Ohtsu, Y.; Kashiwagi, T.; Iwahashi, J.; Hamada, N.; Mizoue, K.; Tsumura, N.; Kato, H.; Toyoda, T. Influenza virus RNA polymerase PA subunit is a novel serin protease with Ser624 at the active site. In: Genes Cells 6 (2001) S. 87–97.PubMedCrossRefGoogle Scholar
  17. Hatta, M.; Kawaoka, Y. The continued pandemic threat posed by avian influenza viruses in Hong Kong. In: Trends Microbiol. 10 (2002) S. 340–344.PubMedCrossRefGoogle Scholar
  18. Hatta, M., Kawaoka, Y. The NB protein of influenza B virus is not necessary for virus replication in vitro. In: J. Virol. 77 (2003) S. 6050–6054.PubMedCrossRefGoogle Scholar
  19. Herrler, G.; Klenk, H. D. Structure and function of the HEF glycoprotein of influenza C virus. In: Adv. Virus Res. 40 (1991) S. 213–234.PubMedCrossRefGoogle Scholar
  20. Ison, M.G.; Gubareva, L.V.; Atmar, R.L.; Treanor, J.; Hayden, F.G. Recovery of drug-resistant influenza virus from immunocom-promised patients: a case series. In: J. Infect. Dis. 193 (2006) S. 760–764.PubMedCrossRefGoogle Scholar
  21. de Jong, M.D.; Tran, T. T.; Truong, H. K.; Vo, M. H.; Smith, G. J.; Nguyen, V. C.; Bach, V. C.; Phan, T. Q.; Do, Q. H.; Guan, Y.; Peiris, J. S.; Tran, T. H.; Farrar, J. Oseltamivir resistance during treatment of influenza A (H5N1) infection. In: N. Engl. J. Med. 353 (2005) S. 2667–2672.PubMedCrossRefGoogle Scholar
  22. Klenk, H. D. Infection of the endothelium by influenza viruses. In: Thromb. Haemost. 94 (2005) S. 262–265.PubMedGoogle Scholar
  23. Klenk, H. D.; Garten, W. Host cell proteases controlling virus pathogenicity. In: Trends Microbiol. 2 (1994) S. 39–43.PubMedCrossRefGoogle Scholar
  24. Krug, R. M. (Hrsg.) The Influenza Viruses. New York (Plenum Press) 1989.Google Scholar
  25. Krug, R. M.; Yuan, W.; Noah, D. L.; Latham, A. G. Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. In: Virology 309 (2003) S. 181–189.PubMedCrossRefGoogle Scholar
  26. Ludwig, S.; Pleschka, S.; Planz, O.; Wolff, T. Ringing the alarm bells: signalling and apoptosis in influenza virus infected cells. In: Cell Microbiol. 8 (2006) S. 375–386.PubMedCrossRefGoogle Scholar
  27. Mahmoudian S., Auerochs S., Gröne M., Marschall M. Influenza A virus proteins PB1 and NS1 are subject to functionally important phosphorylation by protein kinase C. In: J. Gen. Virol. 90 (2009) S. 1392–1397.PubMedCrossRefGoogle Scholar
  28. Matrosovich M.; Stech J.; Klenk H. D. Influenza receptors, polymerase and host range. In: Rev. Sci. Tech. 28 (2009) S. 203–217.PubMedGoogle Scholar
  29. Mazur, I.; Anhlan, D.; Mitzner, D.; Wixler, L.; Schubert, U.; Ludwig, S. The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. In: Cell Microbiol. 10 (2008) S. 1140–1152.PubMedCrossRefGoogle Scholar
  30. Min, J. Y.; Krug, R. M. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2′–5′ oligo (A) synthetase/RNase L pathway. In: Proc. Natl. Acad. Sci. USA 103 (2006) S. 7100–7105.PubMedCrossRefGoogle Scholar
  31. Mitzner, D.; Dudek, S. E.; Studtrucker, N.; Anhlan, D.; Mazur, I.; Wissing, J.; Jänsch, L.; Wixler, L.; Bruns, K.; Sharma, A.; Wray, V.; Henklein, P.; Ludwig, S.; Schubert, U. Phosphorylation of the influenza A virus protein PB1-F2 by PKC is crucial for apoptosis promoting functions in monocytes. In: Cell Microbiol. 2009Google Scholar
  32. Mould, J.A.; Paterson, R.G.; Takeda, M.; Ohigashi, Y.; Venkataraman, P.; Lamb, R.A.; Pinto, L.H. Influenza B virus BM2 protein has ion channel activity that conducts protons across membranes. In: Dev. Cell. 5 (2003) S:175–184.PubMedCrossRefGoogle Scholar
  33. Muramkami, M.; Towatari, T.; Ohuchi, M.; Shiota, M.; Akao, M.; Okumura, Y.; Parry, M. A. A.; Kido, H. Mini-plasmin found in the epithelial cells of bronchioles triggers infection by broad spectrum influenza A viruses and Sendai virus. In: Eur. J. Biochem. 268 (2001) S. 2847–2855.CrossRefGoogle Scholar
  34. Naffakh, N.; Massin, P.; Werf, S. van der. The transcription/replication activity of the polymerase of influenza A viruses is not correlated with the level of proteolysis induced by the PA subunit. In: Virol. 285 (2001) S. 244–252.CrossRefGoogle Scholar
  35. Neumann, G.; Hughes, M. T.; Kawaoka, Y. Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction hCRM1. In: EMBO Journ. 19 (2000) S. 7651–7658.Google Scholar
  36. Nicholson, K. G.; Wood, J. M.; Zambon, M. Influenza. In: Lancet 362 (2003) S. 1733–1745.PubMedCrossRefGoogle Scholar
  37. Osterhaus, A. D.; Rimmelzwaan, G. F.; Martina, B. E.; Bestebroer, T. M.; Fouchier, R. A. Influenza B virus in seals. In: Science 288 (2000) S. 1051–1053.PubMedCrossRefGoogle Scholar
  38. Oxford, J. S. Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology. In: Rev. Med. Virol. 10 (2000) S. 119–133.PubMedCrossRefGoogle Scholar
  39. Palese, P.; Talon, J.; O’Neill, R. E.; Anderson, D. K.; Garcia-Sastre, A.; Palese, P. Influenza B and C virus NEP (NS2) proteins possess nuclear export activities. In: J. Virol. 75 (2001) S. 7375–7383.PubMedCrossRefGoogle Scholar
  40. Perez, D. R.; Donis, R. O. Functional analysis of PA binding by influenza A virus PB1: effects on polymerase activity and viral infectivity. In: J. Virol. 75 (2001) S. 8127–8136.PubMedCrossRefGoogle Scholar
  41. Peng, G.; Hongo, S.; Muraki, Y.; Sugawara, K.; Nishimura, H.; Kitame, F.; Nakamura, K. Genetic reassortment of influenza C viruses in man. In: J. Gen. Virol. 75 (1994) S. 3619–3622.PubMedCrossRefGoogle Scholar
  42. Pinto, L. H.; Lamb, R. A. The M2-proton channels of influenza A and B viruses. In: J. Biol. Chem. 281 (2006) S. 8997–9000.PubMedCrossRefGoogle Scholar
  43. Reid, A. H.; Fanning, T. G.; Hultin, J. V.; Taubenberger, J. K. Origin and evolution of the 1918 “spanish” influenza virus hemagglutinin. In: Proc. Natl. Acad. Sci. USA 96 (1999) S. 1651–1656.PubMedCrossRefGoogle Scholar
  44. Seo, S. H.; Hoffmann, E.; Webster, R. G. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. In: Nat. Med. 8 (2002) S. 950–954.PubMedCrossRefGoogle Scholar
  45. Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N., Kawaoka, Y. Avian flu: influenza virus receptors in the human airway. In: Nature 440 (2006) S. 435–436.PubMedCrossRefGoogle Scholar
  46. Skehel, J. J.; Wiley, D. C. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. In: Annu. Rev. Biochem. 69 (2000) S. 531–569.PubMedCrossRefGoogle Scholar
  47. Smith G. J.; Vijaykrishna, D.; Bahl, J.; Lycett, S. J.; Worobey, M.; Pybus, O. G.; Ma, S. K.; Cheung, C. L.; Raghwani, J.; Bhatt, S.; Peiris, J. S.; Guan, Y.; Rambaut, A. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. In: Nature 459 (2009) S. 1122–1125.PubMedCrossRefGoogle Scholar
  48. Subbarao, K.; Shaw, M. W. Molecular aspects of avian influenza (H5N1) viruses isolated from humans. In: Rev. Med. Virol. 10 (2000) S. 337–348.PubMedCrossRefGoogle Scholar
  49. Suzuki, Y. Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. In: Biol. Pharm. Bull. 28 (2005) S. 399–408.PubMedCrossRefGoogle Scholar
  50. Swayne, D. E. Understanding the ecology and epidemiology of avian influenza viruses: Implications for zoonotic potential. In: Brown, C.; Brolin, C. (Hrsg.) Emerging diseases of animals. Washington D. C. (ASM Press) 2000, S. 101–130.Google Scholar
  51. Taubenberger, J. K.; Reid, A. H.; Janczewski, T. A.; Fanning, T. G. Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. In: Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356 (2001) S. 1829–1839.PubMedCrossRefGoogle Scholar
  52. To, K.-F.; Chan, P. K. S.; Chan, K.-F.; Lee, W.-K.; Lam, W.-Y.; Wong, K.-F.; Tang, M. L. S.; Tsang, D. N. C.; Sung, R. Y. T.; Buckley, T. A.; Tam, J. S.; Cheng, A. F. Pathology of fatal human infection associated with avian influenza A H5N1 virus. In: J. Med. Virol. 63 (2001) S. 242–246.PubMedCrossRefGoogle Scholar
  53. Tumpey, T. M.; Suarez, D. L.; Perkins, L. E.; Senne, D. A.; Lee, J. G.; Lee, Y. J.; Mo, I. P.; Sung, H. W.; Swayne, D. E. Characterization of a highly pathogenic H5N1 avian influenza A virus isolated from duck meat. In: J. Virol. 76 (2002) S. 6344–6355.PubMedCrossRefGoogle Scholar
  54. Wagner, R.; Herwig, A.; Azzouz, N.; Klenk, H. D. Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity. In: J. Virol. 79 (2005) S. 6449–6458.PubMedCrossRefGoogle Scholar
  55. Webster, R. G.; Bean, W. J.; Gorman, O. T.; Chambers, T. M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. In: Microbiological Reviews 56 (1992) S. 152–179.PubMedGoogle Scholar
  56. Webster, R. G.; Guan, Y.; Peiris, M.; Walker, D.; Krauss, S.; Zhou, N. N.; Govorkova, E. A.; Ellis, T. M.; Dyrting, K. C.; Sit, T.; Perez, D. R.; Shortridge, K. F. Characterization of H5N1 influenza viruses that continue to circulate in geese in southeastern China. In: J. Virol. 76 (2002) S. 118–126.PubMedCrossRefGoogle Scholar
  57. Wiley, D. C.; Skehel, J. J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. In: Annu. Rev. Biochem. 56 (1987) S. 365–394.PubMedCrossRefGoogle Scholar
  58. Wise, H. M.; Foeglein, A.; Sun, J.; Dalton, R. M.; Patel, S.; Howard, W.; Anderson, E. C.; Barclay, W. S.; Digard, P. A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. In: J. Virol. 83 (2009) S. 8021–8031.PubMedCrossRefGoogle Scholar
  59. Zamarin, D.; Garcia-Sastre, A.; Xiao, X.; Wang, R.; Palese, P. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. In: PLoS Pathog. 1 (2005) e4.PubMedCrossRefGoogle Scholar

Copyright information

© Spektrum Akademischer Verlag Heidelberg 2010

Authors and Affiliations

  • Susanne Modrow
    • 1
  • Dietrich Falke
    • 2
  • Uwe Truyen
    • 3
  • Hermann Schätzl
    • 4
  1. 1.Institut für Medizinische Mikrobiologie und HygieneUniversität RegensburgDeutschland
  2. 2.Institut für VirologieUniversität MainzDeutschland
  3. 3.Institut für Tierhygiene und öffentliches VeterinärwesenUniversität LeipzigDeutschland
  4. 4.Institut für VirologieUniversität MünchenDeutschland

Personalised recommendations