Advertisement

Viren mit einzelsträngigem RNA-Genom in Plusstrangorientierung

  • Susanne Modrow
  • Dietrich Falke
  • Uwe Truyen
  • Hermann Schätzl
Chapter

Zusammenfassung

Heute sind acht Virusfamilien bekannt, deren Vertreter eine einzelsträngige RNA in Plusstrangorientierung besitzen: Die Picornaviridae, Caliciviridae, Astroviridae und Hepeviren verfügen über Capside, die keine Hüllmembran aufweisen, wohingegen die Flaviviridae, Togaviridae, Arteriviridae und Coronaviridae durch membranumhüllte Partikel gekennzeichnet sind. Allen gemeinsam ist, dass sie ihre Genome als mRNA verwenden und davon ein oder mehrere Polyproteine synthetisieren, die im weiteren Verlauf durch virale oder auch zelluläre Proteasen in Einzelkomponenten gespalten werden. Die Viren verfügen über eine RNA-abhängige RNA-Polymerase, welche die Plusstrang-RNA sowie die als Zwischenprodukte der Replikation auftretenden Negativstränge übersetzt; dabei gehen die neuen genomischen RNA-Moleküle aus dem zweiten Transkriptionsschritt hervor. Die Einteilung in die unterschiedlichen Familien richtet sich nach Zahl, Größe, Lage und Orientierung der Virusgene auf der RNA, nach der Anzahl der unterschiedlichen Polyproteine, die während der Infektion synthetisiert werden, und nach dem Vorhandensein einer Hüllmembran als Teil der Virionen.

14.1.7 Weiterführende Literatur

  1. Abzug, M. J. The enteroviruses: an emerging infectious disease? The real, the speculative and the really speculative. In: Adv. Exp. Med. Biol. 609 (2008) S. 1–15.PubMedCrossRefGoogle Scholar
  2. Aggarwal, N.; Barnett, P. V. Antigenic sites of foot-and-mouth disease virus (FMDV): an analysis of the specificities of anti-FMDV antibodies after vaccination of naturally susceptible host species. In: J. Gen. Virol. 83 (2002) S. 775–782.PubMedGoogle Scholar
  3. Almond, J. W. Poliovirus neurovirulence. In: The Neurosciences 3 (1991) S. 101–108.CrossRefGoogle Scholar
  4. Baumgarte, S.; de Souza Luna, L. K.; Grywna, K.; Panning, M.; Drexler, J. F.; Karsten, C.; Huppertz, H. I.; Drosten, C. Prevalence, types, and RNA concentrations of human parechoviruses, including a sixth parechovirus type, in stool samples from patients with acute enteritis. In: J. Clin. Microbiol. 46 (2008) S. 242–248.PubMedCrossRefGoogle Scholar
  5. Bible, J. M.; Pantelidis, P.; Chan, P. K.; Tong, C. Y. Genetic evolution of enterovirus 71: epidemiological and pathological implications. In: Rev. Med. Virol. 17 (2007) S. 371–379.PubMedCrossRefGoogle Scholar
  6. Chapman, N. M.; Kim, K. S. Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. In: Curr. Top. Microbiol. Immunol. 323 (2008) S. 275–292.PubMedCrossRefGoogle Scholar
  7. Coetzer, J. A. W.; Thomson, G. R.; Tustin, R. C. (Hrsg.) Infectious Diseases of Livestock with special reference to Southern Africa. Oxford University Press 2004.Google Scholar
  8. Cristina, J.; Costa-Mattioli, M. Genetic variability and molecular evolution of Hepatitis-A virus. In: Virus Res. 127 (2007) S. 151–157.PubMedCrossRefGoogle Scholar
  9. Dreschers, S.; Dumitru, C. A.; Adams, C.; Gulbins, E. The cold case: are rhinoviruses perfectly adapted pathogens? In: Cell. Mol. Life Sci. 64 (2007) S. 181–191.PubMedCrossRefGoogle Scholar
  10. Enders, J. F.; Weller, T. H.; Robbins, F. C. Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. In: Science 190 (1949) S. 85–87.CrossRefGoogle Scholar
  11. Fensterl, V.; Grotheer, D.; Berk, I.; Schlemminger, S.; Vallbracht, A.; Dotzauer, A. Hepatitis-A virus suppresses RIG-I-me diated IRF-3 activation to block induction of beta interferon. In: J. Virol. 79 (2005) S. 10968–10977.PubMedCrossRefGoogle Scholar
  12. Gibbens, J. C.; Sharpe, C. E.; Wilesmith, J. W.; Mansley, L. M.; Michalopoulou, E.; Ryan, J. B. M.; Hudson, M. Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: the first five months. In: The Veterinary Record (Vet. Rec.) 149 (2001). S. 729–743.Google Scholar
  13. Gromeier, M.; Solecki, D.; Patel, D. D.; Wimmer, E. Expression of the human poliovirus receptor/CD 155 gene during development of the central nervous system: Implications for the pathogenesis of poliomyelitis. In: Virology 273 (2000) S. 248–257.PubMedCrossRefGoogle Scholar
  14. Grubman, M. J.; Moraes, M. P.; Diaz-San Segundo, F.; Pena, L.; de los Santos, T. Evading the host immune response: how foot-and-mouth disease virus has become an effective pathogen. In: FEMS Immunol. Med. Microbiol. 53 (2008) S. 8–17.PubMedCrossRefGoogle Scholar
  15. Hogle, J. M.; Chow, M.; Filman, D. J. Three-dimensional structure of poliovirus at 2.9 A resolution. In: Science 229 (1985) S. 1358–1363.PubMedCrossRefGoogle Scholar
  16. Hovi, T. Inactivated poliovirus vaccine and the final stages of poliovirus eradication. In: Vaccine 19 (2001) S. 2268–2272.PubMedCrossRefGoogle Scholar
  17. Jang, S. K.; Pestova, T. V.; Hellen, C. U. T.; Witherell, G. W.; Wimmer, E. Cap-independent translation of picornavirus RNAs: structure and fuction of the internal ribosomal entry site. In: Enzyme 44 (1990) S. 292–309.PubMedGoogle Scholar
  18. Johansen, L. K.; Morrow, C. D. The RNA encompassing the internal ribosomal entry site in the poliovirus 5’ nontranslated region enhances the encapsidation of genomic RNA. In: Virology 273 (2000) S. 391–399.PubMedCrossRefGoogle Scholar
  19. Joki-Korpela, P.; Hyypiä, T. Parechoviruses, a novel group of human picornaviruses. In: Ann. Med. 33 (2001) S. 466–471.PubMedCrossRefGoogle Scholar
  20. Landsteiner, K.; Popper, E. Übertragung der Poliomyelitis acuta auf Affen. In: Z. Immunitätsforschung Orig. 2 (1909) S. 377–390.Google Scholar
  21. Lukashev, A. N. Role of recombination in evolution of enteroviruses. In: Rev. Med. Virol. 15 (2005) S. 157–167.PubMedCrossRefGoogle Scholar
  22. Magnus, H. v.; Gear, J. H. S.; Paul, J. R. A recent definition of poliomyelitis viruses. In: Virology 1 (1955) S. 185–189.CrossRefGoogle Scholar
  23. Martin, A.; Lemon, S. M. Hepatitis-A virus: from discovery to vaccines. In: Hepatology 43 (2006): S. 164–172.CrossRefGoogle Scholar
  24. Morace, G.; Kusov. Y.; Dzagurov. G.; Beneduce, F.; Gauss-Muller, V. The unique role of domain 2A of the Hepatitis-A virus precursor polypeptide P1-2A in viral morphogenesis. In: BMB Rep. 41 (2008) S. 678–683.PubMedGoogle Scholar
  25. Mueller, S.; Wimmer, E.; Cello, J. Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event. In: Virus Res. 111 (2005) S. 175–193.PubMedCrossRefGoogle Scholar
  26. Niklasson, B.; Samsioe, A.; Papadogiannakis, N.; Kawecki, A.; Hörnfeldt, B.; Saade, G. R.; Klitz, W. Association of zoonotic Ljungan virus with intrauterine fetal deaths. In: Birth Defects Res. A. Clin. Mol. Teratol. 79 (2007) S. 488–493.PubMedCrossRefGoogle Scholar
  27. Niklasson, B.; Kinnunen, L.; Hörnfeld, B.; Hörling, J.; Benemer, C.; Hedlund, K. O.; Matskova, L.; Hyypiä, T.; Winberg, G. A new picornavirus isolated from bank roles (Clethrionomys glareolus). In: Virology 255 (1999) S. 86–93.PubMedCrossRefGoogle Scholar
  28. Olson, N. H.; Kolatkar, P. R.; Oliveira, M. A.; Cheng, R. H.; Greve, J. M.; McClelland, A.; Baker, T. S.; Rossmann, M. G. Structure of a human rhinovirus complexed with its receptor molecule. In: Proc. Natl. Acad. Sci. USA 90 (1993) S. 507–511.PubMedCrossRefGoogle Scholar
  29. Paul, A. V.; Rieder, E.; Kim, D. W.; Boom, J. H. van; Wimmer E. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of Vpg. In: J. Virol. 74 (2000) S. 10359–10370.PubMedCrossRefGoogle Scholar
  30. Paulmann, D.; Magulski, T.; Schwarz, R.; Heitmann, L.; Flehmig, B.; Vallbracht, A.; Dotzauer, A. Hepatitis-A virus protein 2B suppresses beta interferon (IFN) gene transcription by interfering with IFN regulatory factor 3 activation. In: J. Gen. Virol. 89 (2008) S. 1593–1604.PubMedCrossRefGoogle Scholar
  31. Racaniello, V. R. One hundred years of poliovirus pathogenesis. In: Virology 344 (2006) S. 9–16.PubMedCrossRefGoogle Scholar
  32. Rieder, E.; Paul, A. V.; Kim, D. W.; van Boom, J. H.; Wimmer, E. Genetic and biochemical studies of poliovirus cis-acting replication element cre in relation to Vpg uridylylation. In: J. Virol. 74 (2000) S. 10371–10380.PubMedCrossRefGoogle Scholar
  33. Rossmann, M. G. The canyon hypothesis. Hiding the cell receptor attachment site an a viral surface from immune surveillance. In: J. Biol. Chem. 264 (1989) S. 14587–14590.PubMedGoogle Scholar
  34. Rossmann, M. G.; Arnold, E.; Erickson, J. W.; Frankenberger, E. A.; Griffith, J. P.; Hecht, H. J.; Johnson, J.; Kamer, J.; Luo, M.; Mosser, A. G.; Rueckert, R. R.; Sherry, B.; Vriend, G. Structure of human common cold virus and functional relationship to other picornaviruses. In: Nature 317 (1985) S. 145–153.PubMedCrossRefGoogle Scholar
  35. Rossmann, M. G.; Bella, J.; Kolatkar, P. R.; He, Y.; Wimmer, E.; Kuhn, R. J.; Baker, T. S. Cell recognition and entry by rhinoand enteroviruses. In: Virology 269 (2000) S. 239–247.PubMedCrossRefGoogle Scholar
  36. Savolainen, C.; Blomqvist, S.; Hovi, T. Human rhinoviruses. In: Paediatr. Respir. Rev. 4 (2003) S. 91–98.PubMedCrossRefGoogle Scholar
  37. Shimizu, H.; Agoh, M.; Agoh, Y.; Yoshida, H.; Yoneyama, T.; Hagiwara, A.; Miyamura, T. Mutation in the 2C region of poliovirus responsible for altered sensitivity to benzimidazole derivatives. In: J. Virol. 74 (2000) S. 4164–4154.Google Scholar
  38. Steil, B. P.; Barton, D. J. Cis-active RNA elements (CREs) and picornavirus RNA replication. In: Virus Res. 139 (2009) S. 240–252.PubMedCrossRefGoogle Scholar
  39. Tami, C.; Silberstein, E.; Manangeeswaran, M.; Freeman, G. J.; Umetsu, S. E.; DeKruyff, R. H.; Umetsu, D. T.; Kaplan, G. G. Immunoglobulin A (IgA) is a natural ligand of Hepatitis-A virus cellular receptor 1 (HAVCR1), and the association of IgA with HAVCR1 enhances virus-receptor interactions. In: J. Virol. 81 (2007) S. 3437–3446.PubMedCrossRefGoogle Scholar
  40. Van der Werf, N.; Kroese, F. G.; Rozing, J.; Hillebrands, J. L. Viral infections as potential triggers of type 1 diabetes. In: Diabetes Metab. Res. Rev. 23 (2007) S. 169–183.PubMedCrossRefGoogle Scholar
  41. Wang, C. Y.; Chang, T. Y.; Walfield, A. M; Ye, J.; Shen, M.; Chen, S. P.; Li, M. C.; Lin, Y. L.; Jong, M. H.; Yang, P. C.; Chyr, N.; Kramer, E.; Brown, F. Effective synthetic peptide vaccine for foot-and-mouth disease in swine. In: Vaccine 20 (2002) S. 2603–2610.PubMedCrossRefGoogle Scholar
  42. Wasley, A.; Fiore, A.; Bell, B. P. Hepatitis-A in the era of vaccination. In: Epidemiol. Rev. 28 (2006) S. 101–111.PubMedCrossRefGoogle Scholar
  43. Wells, V. R.; Plotch, S. J.; De Stefano, J. J. Determination of the mutation rate of poliovirus RNA-dependent RNA polymerase. In: Virus Res. (2001) S. 119–132.Google Scholar
  44. Zoll, J.; Heus, H. A.; van Kuppeveld, F. J.; Melchers, W. J. The struc ture-function relationship of the enterovirus 3′-UTR. In: Virus Res. 139 (2009) S. 209–216.PubMedCrossRefGoogle Scholar

Weiterführende Literatur

  1. Appleton, H.; Higgins, P. G. Letter: Viruses and gastroenteritis in infants. In: Lancet 1, 7919 (1975) S. 1297.PubMedCrossRefGoogle Scholar
  2. Bonaparte, R. S.; Hair, P. S.; Banthia, D.; Marshall, D. M.; Cunnion, K. M.; Krishna, N. K. Human astrovirus coat protein inhibits serum complement activation via C1, the first component of the classical pathway. In: J. Virol. 82 (2008) S. 817–827.PubMedCrossRefGoogle Scholar
  3. Geigenmüller, U.; Chew, T.; Ginzton, N.; Matsui S. M. Processing of nonstructural protein 1a of human astrovirus. In: J. Virol. 76 (2002) S. 2003–2008.PubMedCrossRefGoogle Scholar
  4. Guix, S.; Caballero, S.; Bosch, A.; Pintó, R. M. Human astrovirus C-terminal nsP1a protein is involved in RNA replication. In: Virology 333 (2005) S. 124–131.PubMedCrossRefGoogle Scholar
  5. Guix, S.; Caballero, S.; Bosch, A.; Pintó, R. M. C-terminal nsP1a protein of human astrovirus colocalizes with the endoplasmic Retikulum and viral RNA. In: J. Virol. 78 (2004) S. 13627–13636.PubMedCrossRefGoogle Scholar
  6. Jonassen, C. M.; Jonassen, T. TØ.; Sveen, T. M.; Grinde, B. Complete genomic sequences of astroviruses from sheep and turkey: comparison with related viruses. In: Virus Res. 91 (2003) S. 195–201.PubMedCrossRefGoogle Scholar
  7. Krishna, N. K. Identification of structural domains involved in astrovirus capsid biology. In: Viral Immunol. 18 (2005) S. 17–26.PubMedCrossRefGoogle Scholar
  8. Krishna, N. K.; Cunnion, K. M. Human astrovirus coat protein: a novel C1 inhibitor. In: Adv. Exp. Med. Biol. 632 (2008) S. 237–251.PubMedGoogle Scholar
  9. Moser, L. A.; Schultz-Cherry, S. Pathogenesis of astrovirus infection. In: Viral Immunol. 18 (2005) S. 4–10.PubMedCrossRefGoogle Scholar
  10. Moser, L. A.; Carter, M.; Schultz-Cherry, S. Astrovirus increases epithelial barrier permeability independently of viral replication. In: J. Virol. 81 (2007) S. 11937–11945.PubMedCrossRefGoogle Scholar
  11. Moser, L. A.; Schultz-Cherry, S. Suppression of astrovirus replication by an ERK1/2 inhibitor. In: J. Virol. 82 (2008) S. 7475–7482.PubMedCrossRefGoogle Scholar
  12. Walter, J. E.; Mitchell, D. K. Astrovirus infection in children. In: Curr. Opin. Infect. Dis. 16 (2003) S. 247–253.PubMedGoogle Scholar

Weiterführende Literatur

  1. Bhella, D.; Gatherer, D.; Chaudhry, Y.; Pink, R.; Goodfellow, I. G. Structural insights into calicivirus attachment and uncoating. In: J. Virol. 82 (2008) S. 8051–8058.PubMedCrossRefGoogle Scholar
  2. Cao, S.; Lou, Z.; Tan, M.; Chen, Y.; Liu, Y.; Zhang, Z.; Zhang, X. C.; Jiang, X.; Li, X.; Rao, Z. Structural basis for the recognition of blood group trisaccharides by norovirus. In: J. Virol. 81 (2007) S. 5949–5957.PubMedCrossRefGoogle Scholar
  3. Chen, R.; Neill, J. D.; Estes, M. K.; Prasad, B. V. X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity. In: Proc. Natl. Acad. Sci. USA 103 (2006) S. 8048–8053.PubMedCrossRefGoogle Scholar
  4. Clarke, I. N.; Lambden, P. R. The molecular biology of caliciviruses. In: J. Gen. Virol. 78 (2001) S. 291–301.Google Scholar
  5. Daughenbaugh, K. F.; Fraser, C. S.; Hershey, J. W.; Hardy, M. E. The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. In: EMBO J. 22 (2003) S. 2852–2859.PubMedCrossRefGoogle Scholar
  6. Estes, M. K.; Prasad, B. V.; Atmar, R. L. Noroviruses everywhere: has something changed? In: Curr. Opin. Infect. Dis. 19 (2006) S. 467–474.PubMedCrossRefGoogle Scholar
  7. Geissler, K.; Schneider, K.; Fleuchaus, A.; Parrish, C. R.; Sutter, G.; Truyen, U. Feline calicivirus capsid protein expression and capsid assembly in cultured feline cells. In: J. Virol. 73 (1999) S. 834–838.PubMedGoogle Scholar
  8. Geissler, K.; Schneider, K.; Platzer; G.; Truyen, B.; Kaaden, O.-R.; Truyen, U. Genetic and antigenic heterogenity among feline calicivirus isolates from distinct disease cluster. In: Virus Res. 48 (1997) S. 193–206.PubMedCrossRefGoogle Scholar
  9. Hansman, G. S.; Oka, T.; Katayama, K.; Takeda, N. Human sapoviruses: genetic diversity, recombination, and classification. In: Rev. Med. Virol. 17 (2007) S. 133–141.PubMedCrossRefGoogle Scholar
  10. Jiang, X.; Huang, P.; Zhong, W.; Tan, M.; Farkas, T.; Morrow, A. L.; Newburg, D. S.; Ruiz-Palacios, G. M.; Pickering, L. K. Human milk contains elements that block binding of noroviruses to human histo-blood group antigens in saliva. In: J. Infect. Dis. 190 (2004) S. 1850–1859.PubMedCrossRefGoogle Scholar
  11. Koch, J.; Schneider, T.; Stark, K.; Schreier, E. Norovirus infections in Germany. In: Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 49 (2006) S. 296–309.PubMedCrossRefGoogle Scholar
  12. Koopmans, M. Progress in understanding norovirus epidemiology. In: Curr. Opin. Infect. Dis. (2008) S. 544–552.Google Scholar
  13. L’Homme, Y.; Sansregret, R.; Plante-Fortier, E.; Lamontagne, A. M.; Ouardani, M.; Lacroix, G.; Simard, C. Genomic characterization of swine caliciviruses representing a new genus of Caliciviridae. In: Virus Genes 39 (2009) S. 66–75.PubMedCrossRefGoogle Scholar
  14. Martella, V.; Lorusso, E.; Decaro, N.; Elia, G.; Radogna, A.; D’Abramo, M.; Desario, C.; Cavalli, A.; Corrente, M.; Camero, M.; Germinario, C. A.; Bányai, K.; Di Martino, B.; Marsilio, F.; Carmichael, L.E.; Buonavoglia, C. Detection and molecular characterization of a canine norovirus. In: Emerg. Infect. Dis. 14 (2008) S. 1306–1308.PubMedCrossRefGoogle Scholar
  15. McCormick, C. J.; Salim, O.; Lambden, P. R.; Clarke, I. N. Translational termination re-initiation between ORF1 and ORF2 enables capsid expression in a bovine norovirus without the need for production of viral sub-genomic RNA. In: J. Virol. 2008Google Scholar
  16. Oka, T.; Yamamoto, M.; Katayama, K.; Hansman, G. S.; Ogawa, S.; Miyamura, T.; Takeda, N. Identification of the cleavage sites of sapovirus open reading frame 1 polyprotein. In: J. Gen. Virol. 87 (2006) S. 3329–3338.PubMedCrossRefGoogle Scholar
  17. Ossiboff, R. J.; Parker, J. S. Identification of regions and residues in feline junctional adhesion molecule required for feline calicivirus binding and infection. In: J. Virol. 81 (2007) S. 13608–13621.PubMedCrossRefGoogle Scholar
  18. Radford, A. D.; Gaskell, R. M.; Hart, C. A. Human norovirus infection and the lessons from animal caliciviruses. In: Curr. Opin. Infect. Dis. 17 (2004) S. 471–478.PubMedCrossRefGoogle Scholar
  19. Robel, I.; Gebhardt, J.; Mesters, J. R.; Gorbalenya, A.; Coutard, B.; Canard, B.; Hilgenfeld, R.; Rohayem, J. Functional characterization of the cleavage specificity of the sapovirus chymotrypsin-like protease. In: J. Virol. 82 (2008) S. 8085–8093.PubMedCrossRefGoogle Scholar
  20. Rockx, B. H.; Vennema, H.; Hoebe, C. J.; Duizer, E.; Koopmans, M. P. Association of histo-blood group antigens and susceptibility to norovirus infections. In: J. Infect. Dis. 191 (2005) S. 749–754.PubMedCrossRefGoogle Scholar
  21. Scipioni, A.; Mauroy, A.; Vinjé, J.; Thiry, E. Animal noroviruses. In: The Veterinary Journal 178 (2008) S. 32–45.PubMedCrossRefGoogle Scholar
  22. Sosnovtsev, S.; Green, K. Y. RNA transcripts derived from a cloned full-length copy of the feline calicivirus genome do not require VpG for infectivity. In: Virology 210 (2000) S. 383–390.CrossRefGoogle Scholar
  23. Tan, M.; Jiang, X. Norovirus-host interaction: implications for disease control and prevention. In: Expert. Rev. Mol. Med. 9 (2007) S. 1–22.PubMedCrossRefGoogle Scholar
  24. Tan, M.; Jiang, X. Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. In: Trends Microbiol. 13 (2005) S. 285–293.PubMedCrossRefGoogle Scholar
  25. Wirblich, C.; Thiel, H.; Meyers, G. Genetic map of the calicivirus rabbit hemorrhagic disease virus as deduced from in vitro translation studies. In: J. Virol. 70 (1996) S. 7974–7983.PubMedGoogle Scholar

Weiterführende Literatur

  1. Bouwknegt, M.; Lodder-Verschoor, F.; van der Poel, W. H.; Rutjes, S. A.; de Roda Husman, A. M. Hepatitis-E virus RNA in commercial porcine livers in The Netherlands. In: J. Food Prot. 70 (2007) S. 2889–2895.PubMedGoogle Scholar
  2. Bradley, D. W.; Balayan, M. S. Viruses of enterically transmitted non-A, non-B hepatitis. In: Lancet 1 (1988) S. 819.PubMedCrossRefGoogle Scholar
  3. Chandra, V.; Kar-Roy, A.; Kumari, S.; Mayor, S.; Jameel, S. The Hepatitis-E virus ORF3 protein modulates epidermal growth factor receptor trafficking, STAT3 translocation, and the acute-phase response. In: J. Virol. 82 (2008) S. 7100–7110.PubMedCrossRefGoogle Scholar
  4. Chandra, V.; Taneja, S.; Kalia, M.; Jameel, S. Molecular biology and pathogenesis of Hepatitis-E virus. In: J. Biosci. 33 (2008) S. 451–464.PubMedCrossRefGoogle Scholar
  5. Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M. Isolation of a cDNA clone from a blood-borne non-A, non-B viral hepatitis genome. In: Science 244 (1989) S. 359–362.PubMedCrossRefGoogle Scholar
  6. Guu, T. S.; Liu, Z.; Ye, Q.; Mata, D. A.; Li K.; Yin, C.; Zhang, J.; Tao, Y. J. Structure of the Hepatitis-E virus-like particle suggests mechanisms for virus assembly and receptor binding. In: Proc. Natl. Acad. Sci. USA 106 (2009) S. 12992–12997.PubMedCrossRefGoogle Scholar
  7. Haagsma, E. B.; van den Berg, A. P.; Porte, R. J.; Benne, C. A.; Vennema, H.; Reimerink, J.H.; Koopmans, M. P. Chronic Hepatitis-E virus infection in liver transplant recipients. In: Liver Transpl. 14 (2008) S. 547–553.PubMedCrossRefGoogle Scholar
  8. Kaci, S.; Nöckler, K.; Johne, R. Detection of Hepatitis-E virus in archived German wild boar serum samples. In: Vet. Microbiol. 128 (2008) S. 380–385.PubMedCrossRefGoogle Scholar
  9. Kamar, N.; Selves, J.; Mansuy, J. M.; Ouezzani, L.; Péron, J. M.; Guitard, J.; Cointault, O.; Esposito, L.; Abravanel, F.; Danjoux, M.; Durand, D.; Vinel, J. P.; Izopet, J.; Rostaing, L. Hepatitis-E virus and chronic hepatitis in organ-transplant recipients. In: N. Engl. J. Med. 358 (2008) S. 811–817.PubMedCrossRefGoogle Scholar
  10. Kannan, H.; Fan, S.; Patel, D.; Bossis, I.; Zhang, Y. J. The Hepatitis-E virus open reading frame 3 product interacts with microtubules and interferes with their dynamics. In: J. Virol. 83 (2009) S. 6375–6382PubMedCrossRefGoogle Scholar
  11. Li, S.; Tang, X.; Seetharaman, J.; Yang, C.; Gu, Y.; Zhang, J.; Du, H.; Shih, J. W.; Hew, C. L.; Sivaraman, J.; Xia, N. Dimerization of Hepatitis-E virus capsid protein E2s domain is essential for virus-host interaction. In: PLoS Pathog. 5 (2009) e1000537.Google Scholar
  12. Mansuy, J. M.; Legrand-Abravanel, F.; Calot, J. P.; Peron, J. M.; Alric, L.; Agudo, S.; Rech, H.; Destruel, F.; Izopet, J. High prevalence of anti-Hepatitis-E virus antibodies in blood donors from South West France. In: J. Med. Virol. 80 (2008) S. 289–293.PubMedCrossRefGoogle Scholar
  13. Meng, X. J. Hepatitis-E virus: Animal reservoirs and zoonotic risk. In: Vet. Microbiol. (2009)Google Scholar
  14. Meng, X. J.; Halbur, P. G.; Haynes, J. S.; Tsavera, T. S.; Bruna, J.D.; Royer, R. L.; Purcell, R. H.; Emerson, S. U. Experimental infection of pigs with the newly identified swine hepatitis virus (swine HEV), but not with human strains of HEV. In: Archives of Virology 143 (1998) S. 1405–1415.PubMedCrossRefGoogle Scholar
  15. Meng, X. J.; Halbur, P. G.; Shapiro, M. S.; Govindarajan, S.; Bruna, J. D.; Mushahwar, I. K.; Purcell, R. H.; Emerson, S. U. Genetic and experimental evidence for cross-species infection by swine Hepatitis-E virus. In: J. Virol. 72 (1998) S. 9714–9721.PubMedGoogle Scholar
  16. Purcell, R. H.; Emerson, S. U. Hepatitis-E: an emerging awareness of an old disease. In: J. Hepatol. 48 (2008) S. 494–503.PubMedCrossRefGoogle Scholar
  17. Shrestha, M. P.; Scott, R. M.; Joshi, D. M.; Mammen, M. P. Jr.; Thapa, G. B.; Thapa, N.; Myint, K. S.; Fourneau, M.; Kuschner, R. A.; Shrestha, S. K.; David, M. P.; Seriwatana, J.; Vaughn, D. W.; Safary, A.; Endy, T. P.; Innis, B. L. Safety and efficacy of a recombinant Hepatitis-E vaccine. In: N. Engl. J. Med. 356 (2007) S. 895–903.PubMedCrossRefGoogle Scholar
  18. Surjit, M.; Jameel, S.; Lal, S. K. Cytoplasmic localization of the ORF2 protein of Hepatitis-E virus is dependent on its ability to undergo retrotranslocation from the endoplasmic Retikulum. In: J. Virol. 81 (2007) S. 3339–3345.PubMedCrossRefGoogle Scholar
  19. Tygai, S.; Jameel, S.; Lal, S. K. Self-association and mapping of the interaction domain of Hepatitis-E-virus ORF3 protein. In: J. Virol. 75 (2001) S. 2493–2498.CrossRefGoogle Scholar
  20. Wang, Y.; Zhang, H.; Ling, R.; Li, H.; Harrison, T. J. The complete sequence of Hepatitis-E virus genotype 4 reveals an alternative strategy for translation of openreading frames 2 and 3. In: J. Gen. Virol. 81 (2000) S. 1675–1686.PubMedGoogle Scholar
  21. Worm, H. C.; Schlauder, G. G.; Wurzer, H.; Mushahwar, I. K. Identification of a novel variant of Hepatitis-E virus in Austria: sequence, phylogenetic and serological analysis. In: J. Gen. Virol. 81 (2000) S. 2885–2890.PubMedGoogle Scholar

Weiterführende Literatur

  1. Appel, N.; Zayas, M.; Miller, S.; Krijnse-Locker, J.; Schaller, T.; Friebe, P.; Kallis, S.; Engel, U.; Bartenschlager, R. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. In: PLoS Pathog. 28 (2008) e1000035.Google Scholar
  2. Bartenschlager, R.; Miller, S. Molecular aspects of Dengue virus replication. In: Future Microbiol. 3 (2008) S. 155–165.PubMedCrossRefGoogle Scholar
  3. Bartenschlager, R.; Ahlborn-Laake, L.; Yasargil, K.; Mous, J.; Jacobson, H. Substrate determinants for cleavage in cis and trans by hepatitis C virus NS3 proteinase. In: J. Virol. 69 (1995) S. 98–205.Google Scholar
  4. Bartenschlager, R.; Lohmann, V. Replication of hepatitis-C-virus. In: J. Gen. Virol. 81 (2000) S. 1631–1648.PubMedGoogle Scholar
  5. Bauhofer, O.; Summerfield, A.; Sakoda, Y.; Tratschin, J. D.; Hofmann, M. A.; Ruggli, N. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. In: J. Virol. 81 (2007) S. 3087–3096.PubMedCrossRefGoogle Scholar
  6. Becher, P.; Orlich, M.; Thiel, H.-J. RNA recombination between persisting pestivirus and a vaccine strain: generation of cytopathogenic virus and induction of lethal disease. In: J. Virol. 75 (2001) S. 6256–6264.PubMedCrossRefGoogle Scholar
  7. Berman, K.; Kwo, P. Y. Boceprevir, an NS3 protease inhibitor of HCV. In: Clin. Liver Dis. 13 (2009) S. 429–39.PubMedCrossRefGoogle Scholar
  8. Chen, Z.; Rijnbrand, R.; Jangra, R. K.; Devaraj, S. G.; Qu, L.; Ma, Y.; Lemon, S. M.; Li, K. Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic bovine viral diarrhea virus. In: Virology 366 (2007) S. 277–292.PubMedCrossRefGoogle Scholar
  9. Chen, S. T.; Lin, Y. L.; Huang, M. T.; Wu, M. F.; Cheng, S. C.; Lei, H. Y.; Lee, C. K.; Chiou, T. W.; Wong, C. H.; Hsieh, S. L. CLEC 5A is critical for dengue-virus-induced lethal disease. In: Nature 453 (2008) S. 672–676.PubMedCrossRefGoogle Scholar
  10. Chu, J. J.; Ng, M. L. Interaction of West Nile virus with alpha v beta 3 integrin mediates virus entry into cells. In: J. Biol. Chem. 279 (2004) S. 54533–54541.PubMedCrossRefGoogle Scholar
  11. Esteban, J. I.; Sauleda, S.; Quer, J. The changing epidemiology of hepatitis C virus infection in Europe. In: J. Hepatol. 48 (2008) S.148–162.PubMedCrossRefGoogle Scholar
  12. Glass, W. G.; Lim, J. K.; Cholera, R.; Pletnev, A. G.; Gao, J. L.; Murphy, P. M. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. In: J. Exp. Med. 202 (2005) S. 1087–1098.PubMedCrossRefGoogle Scholar
  13. Glass, W. G.; McDermott, D. H.; Lim, J. K.; Lekhong, S.; Yu, S. F.; Frank, W. A.; Pape, J.; Cheshier, R. C.; Murphy, P. M. CCR5 deficiency increases risk of symptomatic West Nile virus infection. In: J. Exp. Med. 203 (2006) S. 35–40.PubMedCrossRefGoogle Scholar
  14. Gould, E. A.; Solomon, T. Pathogenic flaviviruses. In: Lancet 371 (2008) S. 500–509.PubMedCrossRefGoogle Scholar
  15. Chung, K. M.; Liszewski, M. K.; Nybakken, G.; Davis, A. E.; Townsend, R. R.; Fremont, D. H.; Atkinson, J. P.; Diamond, M. S. West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H. In: Proc. Natl. Acad. Sci. USA 103 (2006) S. 19111–19116.PubMedCrossRefGoogle Scholar
  16. Guzman, M. G.; Kouri, G. Dengue: An update. In: Lancet Infect. Dis. 2 (2002) S. 33–42.PubMedCrossRefGoogle Scholar
  17. Harrison, S. C. Viral membrane fusion. In: Nat. Struct. Mol. Biol. 15 (2008) S. 690–698.PubMedCrossRefGoogle Scholar
  18. Henchal, E. A.; Putnak, J. R. The Dengue viruses. In: Clin. Microbiol. Rev. 376 (1990) S. 376–396.Google Scholar
  19. Hershkovitz, O.; Zilka, A.; Bar-Ilan, A.; Abutbul, S.; Davidson, A.; Mazzon, M.; Kümmerer, B. M.; Monsoengo, A.; Jacobs, M.; Porgador, A. Dengue virus replicon expressing the nonstructural proteins suffices to enhance membrane expression of HLA class I and inhibit lysis by human NK cells. In: J. Virol. 82 (2008) S. 7666–7676.PubMedCrossRefGoogle Scholar
  20. Iqbal, M.; Poole, E.; Goodbourn, S.; McCauley, J. W. Role for bovine viral diarrhea virus Erns glycoprotein in the control of activation of beta interferon by double-stranded RNA. In: J. Virol. 78 (2004) S. 136–145.PubMedCrossRefGoogle Scholar
  21. Kroschewski, H.; Allison, S. L.; Heinz, F. X.; Mandl, C. W. Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. In: Virology 308 (2003) S. 92–100.PubMedCrossRefGoogle Scholar
  22. Jung, S.; Eichenmüller, M.; Donhauser, N.; Neipel, F.; Engel, A. M.; Hess, G.; Fleckenstein, B.; Reil, H. HIV entry inhibition by the envelope 2 glycoprotein of GB virus C. In: AIDS 21 (2007) S. 645–647.PubMedCrossRefGoogle Scholar
  23. Kindberg, E.; Mickiene, A.; Ax, C.; Akerlind, B.; Vene, S.; Lindquist, L.; Lundkvist, A.; Svensson, L. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. In: J. Infect. Dis. 197 (2008) S. 266–269.PubMedCrossRefGoogle Scholar
  24. Lai, C.Y.; Tsai, W. Y.; Lin, S. R.; Kao, C. L.; Hu, H. P.; King, C. C.; Wu, H. C.; Chang, G. J.; Wang, W. K. Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. In: J. Virol. 82 (2008) S. 6631–6643.PubMedCrossRefGoogle Scholar
  25. Lei, H. Y.; Yeh, T. M.; Lin, H. S.; Lin, Y. S.; Chen, S. H.; Lin, C. C. Immunopathogenesis of dengue virus infection. In: J. Biomed. Sci. 8 (2001) S. 377–388.PubMedCrossRefGoogle Scholar
  26. Leung, J. Y.; Pijlman, G. P.; Kondratieva, N.; Hyde, J.; Mackenzie, J. M.; Khromykh, A. A. Role of nonstructural protein NS2A in flavivirus assembly. In: J. Virol. 82 (2008) S. 4731–4741.PubMedCrossRefGoogle Scholar
  27. Lim, J. K.; Glass, W. G.; McDermott, D. H.; Murphy, P. M. CCR5: no longer a “good for nothing” gene-chemokine control of West Nile virus infection. In: Trends Immunol. 27 (2006) S. 308–312.PubMedCrossRefGoogle Scholar
  28. Lin, R. J.; Chang, B. L.; Yu, H. P.; Liao, C. L.; Lin, Y. L. Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. In: J. Virol. 80 (2006) S. 5908–5918.PubMedCrossRefGoogle Scholar
  29. Liu, W. J.; Wang, X. J.; Clark, D. C.; Lobigs, M.; Hall, R. A.; Khromykh, A. A. A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. In: J. Virol. 80 (2006) S. 2396–2404.PubMedCrossRefGoogle Scholar
  30. Mansfield, K. L.; Johnson, N.; Phipps, L. P.; Stephenson, J. R.; Fooks, A. R.; Solomon, T. Tick-borne encephalitis virus — a review of an emerging zoonosis. In: J. Gen. Virol. 90 (2009) S. 1781–1794.PubMedCrossRefGoogle Scholar
  31. Meyers, G.; Thiel, H. J. Molecular characterization of pestiviruses. In: Adv. Virus Res. 47 (1996) 53–118.PubMedCrossRefGoogle Scholar
  32. Muerhoff, A. S.; Leary, T. P.; Simons, J. N.; Pilot-Matias, T. J.; Dawson, G. J.; Erker, J. C.; Chalmers, M. L.; Schlauder, G. G.; Desai, S. M.; Mushahwar, I. K. Genomic organization of GB viruses A and B: Two new members of the flaviviridae associated with GB agent hepatitis. In: J. Virol. 69 (1995) S. 5621–5630.PubMedGoogle Scholar
  33. Pardigon, N. The biology of chikungunya: a brief review of what we still do not know. In: Pathol. Biol. (Paris) 57 (2009) S. 127–132.Google Scholar
  34. Pfleiderer, C.; Blümel, J.; Schmidt, M.; Roth, W. K.; Houfar, M. K.; Eckert, J.; Chudy, M.; Menichetti, E.; Lechner, S.; Nübling, C. M. West Nile virus and blood product safety in Germany. In: J. Med. Virol. 80 (2008) S. 557–563.PubMedCrossRefGoogle Scholar
  35. Pierson, T. C.; Diamond, M. S. Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. In: Expert Rev. Mol. Med. 10 (2008) e12.PubMedCrossRefGoogle Scholar
  36. Pileri, P.; Uematsu, Y.; Campagnoli, S.; Galli, G.; Falugi, F.; Petracca, R.; Weiner, A. J.; Houghton, M.; Rosa, D.; Grandi, G.; Abrignani, S. Binding of Hepatitis C Virus to CD81. In: Science 282 (1998) S. 938–941.PubMedCrossRefGoogle Scholar
  37. Reshetnyak, V. I.; Karlovich, T. I.; Ilchenko, L. U. Hepatitis G virus. In: World J. Gastroenterol. 14 (2008) S. 4725–4734.PubMedCrossRefGoogle Scholar
  38. Rümenapf, T.; Thiel, H.-J. Molecular Biology of Pestiviruses. In: Mettenleiter, T. C.; Sobrino, F. (Hrsg.) Animal viruses. ORT (Mo lecular Biology. Caister Academic Press) 2008. S. 39–96.Google Scholar
  39. Rey, F. A.; Heinz, F. X.; Mandl, C.; Kunz, C.; Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2Å resolution. In: Nature 375 (1995) S. 291–299.PubMedCrossRefGoogle Scholar
  40. Solomon, T. Flavivirus encephalitis. In: N. Engl. J. Med. 351 (2004) S. 370–378.PubMedCrossRefGoogle Scholar
  41. Tautz, N.; Elbers, K.; Stoll, D.; Meyers, G.; Thiel, H.-J. Serin protease of pestivirus: Determination of cleavage sites. In: J. Virol. 71 (1997) S. 5415–5422.PubMedGoogle Scholar
  42. Timm, J.; Roggendorf, M. Sequence diversity of hepatitis C virus: implications for immune control and therapy. In: World J. Gastroenterol. 13 (2007) S. 4808–4817.PubMedGoogle Scholar
  43. Wallner, G.; Mandl, C. W.; Kunz, C.; Heinz, F. X. The flavivirus 3′-noncoding region: Extensive size heterogenicity independent of evolutionary relationships among strains of tick-borne encephalitis virus. In: Virology 213 (1995) S. 169–178.PubMedCrossRefGoogle Scholar
  44. White, D. J.; Morse, D. L. West-Nile-Virus: Detection, Surveillance and Control. In: Am. N.Y. Acad. Sci. 951 (2001) S. 1–374.Google Scholar
  45. Wilson, J. R.; de Sessions, P. F.; Leon, M. A.; Scholle, F. West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. In: J. Virol. 82 (2008) S. 8262–8271.PubMedCrossRefGoogle Scholar
  46. Yamshchikov, V. F.; Compans, R. W. Formation of flavivirus envelope: role of the viral NS2B-NS3 protease. In: J. Virol. 96 (1995) S. 1995–2003.Google Scholar
  47. Zhou, Y.; Ray, D.; Zhao.; Y, Dong.; H, Ren.; S, Li.; Z, Guo.; Y, Bernard, K. A.; Shi, P. Y.; Li, H. Structure and function of flavivirus NS5 methyltransferase. In: J. Virol. 81 (2007) S. 3891–3903.PubMedCrossRefGoogle Scholar

Weiterführende Literatur

  1. Angelini, R.; Finarelli, A. C.; Angelini, P.; Po, C.; Petropulacos, K.; Silvi, G.; Macini, P.; Fortuna, C.; Venturi, G.; Magurano, F.; Fiorentini, C.; Marchi, A.; Benedetti, E.; Bucci, P.; Boros, S.; Romi, R.; Majori, G.; Ciufolini, M. G.; Nicoletti, L.; Rezza, G.; Cassone, A. Chikungunya in north-eastern Italy: a summing up of the outbreak. In: Euro. Surveill. 12 (2007) 071122.2.Google Scholar
  2. Banatvala, J. E.; Brown, D. W. Rubella. In: Lancet 363 (2004) S. 1127–1137.PubMedCrossRefGoogle Scholar
  3. Chen, J.; Strauss, J. H.; Strauss, E. G.; Frey, T. K. Characterization of the rubella virus nonstructural protease domain and its cleavage site. In: J. Virol. 70 (1996) S. 4707–4713.PubMedGoogle Scholar
  4. Chevillon, C.; Briant, L.; Renaud, F.; Devaux, C. The Chikungunya threat: an ecological and evolutionary perspective. In: Trends Microbiol. 16 (2008) S. 80–88.PubMedCrossRefGoogle Scholar
  5. Fontana, J.; Tzeng, W. P.; Calderita, G.; Fraile-Ramos, A.; Frey, T. K.; Risco, C. Novel replication complex architecture in rubella replicon-transfected cells. In: Cell Microbiol. 9 (2007) S. 875–890.PubMedCrossRefGoogle Scholar
  6. Frey, T. K. Molecular biology of rubella virus. In: Adv. Virus Res. 44 (1994) S. 69–160.CrossRefGoogle Scholar
  7. Gonzalez, M. E.; Carrasco, L. Viroporins. In: FEBS Lett. 552 (2003) S. 28–34.PubMedCrossRefGoogle Scholar
  8. Gould, E. A.; Coutard, B.; Malet, H.; Morin, B.; Jamal, S.; Weaver, S.; Gorbalenya, A.; Moureau, G.; Baronti, C.; Delogu, I.; Forrester, N.; Khasnatinov, M.; Gritsun, T.; de Lamballerie, X.; Canard, B. Understanding the alphaviruses: Recent research on important emerging pathogens and progress towards their control. In: Antiviral Res. (2009) doi:10.1016/ j.antiviral.2009.07.007Google Scholar
  9. Greene, I. P.; Paessler, S.; Austgen, L.; Anishchenko, M.; Brault, A. C.; Bowen, R. A.; Weaver, S. C. Envelope glycoprotein mutations mediate equine amplification and virulence of epizootic venezuelan equine encephalitis virus. In: J. Virol. 79 (2005) S. 9128–9133.PubMedCrossRefGoogle Scholar
  10. Kiiver, K.; Tagen, I.; Zusinaite, E.; Tamberg, N.; Fazakerley, J. K.; Merits, A. Properties of non-structural protein 1 of Semliki Forest virus and its interference with virus replication. In: J. Gen. Virol. 89 (2008) S. 1457–1466.PubMedCrossRefGoogle Scholar
  11. Law, L. M.; Everitt, J. C.; Beatch, M. D.; Holmes, C. F.; Hobman, T. C. Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. In: J. Virol. 77 (2003) S. 1764–1771.PubMedCrossRefGoogle Scholar
  12. Lin X.; Yang, J.; Ghazi, A. M.; Frey, T. K. Characterization of the Zinc Binding acitvity of the Rubella Virus nonstructural protease. In: J. Virol. 74 (2000) S. 5949–5956.CrossRefGoogle Scholar
  13. Melton, J. V.; Ewart, G. D.; Weir, R. C.; Board, P. G.; Lee, E.; Gage, P. W. Alphavirus 6K proteins form ion channels. In: J. Biol. Chem. 277 (2002) S. 46923–46931.PubMedCrossRefGoogle Scholar
  14. Powers, A. M.; Brault, A. C.; Shirako, Y.; Strauss, E. G.; Kang, W.; Strauss, J. H.; Weaver, C. Evolutionary relationships and systematics of the alphaviruses. In: J. Virol. 75 (2001) S. 10118–10131.PubMedCrossRefGoogle Scholar
  15. Powers, A. M.; Logue, C. H. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. In: J. Gen. Virol. 88 (2007) S. 2363–2377.PubMedCrossRefGoogle Scholar
  16. Shirako, Y.; Strauss, J. H. Regulation of sindbis virus RNA replication: uncleaved p123 and nsP4 function in minus strand RNA synthesis wheras cleaved products from p123 are required for efficient plus-strand synthesis. In: J. Virol. 68 (1994) S. 1874–1885.PubMedGoogle Scholar
  17. Singh, N. K.; Atreya, C. D.; Nakhasi, H. L. Identification of calreticulin as a rubella virus RNA binding protein. In: Proc. Natl. Acad. Sci. 91 (1994) S. 12770–12774.PubMedCrossRefGoogle Scholar
  18. Spuul, P.; Salonen, A.; Merits, A.; Jokitalo, E.; Kääriäinen, L.; Ahola, T. Role of the amphipathic peptide of Semliki forest virus replicase protein nsP1 in membrane association and virus replication. In: J. Virol. 81 (2007) S. 872–883.PubMedCrossRefGoogle Scholar
  19. Weaver, S. C.; Powers, A. M.; Brault, A. C.; Barrett, A. D. Molecular epidemiological studies of veterinary arboviral encephalitides. In: The Veterinary Journal 157 (1999) S. 123–128.PubMedCrossRefGoogle Scholar
  20. Weaver, S. C.; Pfeffer, M.; Marriott, K.; Kang, W.; Kinney, R. M. Genetic evidence for the origins of Venezuelan equine encephalitis virus subtype IAB outbreaks. In: Am. J. Trop. Med. Hyg. 60 (1999) S. 441–448.PubMedGoogle Scholar
  21. Wolinsky, J. S. Rubella Virus. In: Fields, B. N.; Knipe, D. N.; Howley, P. M. (Hrsg.) Virology. 3. Aufl. New York (Raven Press) 1995. S. 899–930.Google Scholar
  22. Zhou, Y.; Tzeng, W. P.; Yang, W.; Zhou, Y.; Ye, Y.; Lee, H. W.; Frey, T. K.; Yang, J. Identification of a Ca2 +-binding domain in the rubella virus non-structural protease. In: J. Virol. 81 (2007) S. 7517–7528.PubMedCrossRefGoogle Scholar
  23. Zhou, Y.; Ushijima, H.; Frey, T. K. Genomic analysis of diverse rubella virus genotypes. In: J. Gen. Virol. 88 (2007) S. 932–941.PubMedCrossRefGoogle Scholar
  24. Zusinaite, E.; Tints, K.; Kiiver, K.; Spuul, P.; Karo-Astover, L.; Merits, A.; Sarand, I. Mutations at the palmitoylation site of non-structural protein nsP1 of Semliki Forest virus attenuate virus replication and cause accumulation of compensatory mutations. In: J. Gen. Virol. 88 (2007) S. 1977–1985.PubMedCrossRefGoogle Scholar

Weiterführende Literatur

  1. Balasriya, U. B. R.; Snijder, E. J. Arteriviruses. In: Mettenleiter, T. C.; Sobrino, F. (Hrsg.) Animal viruses. 2008 (Molecular Biology. Caister Academic Press) S. 97–148.Google Scholar
  2. Calvert, J. G.; Slade, D. E.; Shields, S. L.; Jolie, R.; Mannan, R. M.; Ankenbauer, R. G.; Welch, S. K. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. In: J. Virol. 81 (2007) S. 7371–7379.PubMedCrossRefGoogle Scholar
  3. Delputte, P. L.; Van Breedam, W.; Delrue, I.; Oetke, C.; Crocker, P. R.; Nauwynck, H. J. Porcine arterivirus attachment to the macrophage-specific receptor sialoadhesin is dependent on the sialic acid-binding activity of the N-terminal immunoglobulin domain of sialoadhesin. In: J. Virol. 81 (2007) S. 9546–9550.PubMedCrossRefGoogle Scholar
  4. Lee, C.; Yoo. D. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties. In: Virology 355 (2006) S. 30–43.PubMedCrossRefGoogle Scholar
  5. MacLachlan, N. J.; Balasuriya, U. B. Equine viral arteritis. In: Adv. Exp. Med. Biol. 581 (2006) S. 429–433.PubMedCrossRefGoogle Scholar
  6. Posthuma, C. C.; Nedialkova, D. D.; Zevenhoven-Dobbe, J. C.; Blokhuis, J. H.; Gorbalenya, A. E.; Snijder, E. J. Site-directed mutagenesis of the Nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle. In: J. Virol. 80 (2006) S. 1653–1661.PubMedCrossRefGoogle Scholar
  7. Snijder, E. J.; Meulenberg, J. J. M. The molecular biology of arteriviruses. In: J. Gen. Virol. 79 (1998) S. 961–979.PubMedGoogle Scholar
  8. Van Marle, G.; Dobbe, J. C.; Gultyaev, A. P.; Luyties, W.; Spaan, W. J.; Snijder, E. J. Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. In: Proc. Natl. Acad. Sci. USA 96 (1999) S. 12056–12061.PubMedCrossRefGoogle Scholar
  9. Ziebuhr, J.; Snijder, E. J.; Gorbalenya, A. E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. In: J. Gen. Virol. 81 (2000) S. 853–879.PubMedGoogle Scholar

Weiterführende Literatur

  1. Brian, D. A.; Baric, R. S. Coronavirus genome structure and replication. In: Curr. Top. Microbiol. Immunol. 287 (2005) S. 1–30.PubMedCrossRefGoogle Scholar
  2. Cheng, V. C.; Lau, S. K.; Woo, P. C.; Yuen, K. Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. In: Clin. Microbiol. Rev. 20 (2007) S. 660–694.PubMedCrossRefGoogle Scholar
  3. Clementz, M. A.; Kanjanahaluethai, A.; O’Brien, T. E.; Baker, S. C. Mutation in murine coronavirus replication protein nsp4 alters assembly of double membrane vesicles. In: Virology 375 (2008) S. 118–129.PubMedCrossRefGoogle Scholar
  4. Cornillez-Ty, C. T.; Liao, L.; Yates, J. R. 3rd.; Kuhn, P.; Buchmeier, M. J. SARS Coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. In: J. Virol. 83 (2009) S. 10314–10318PubMedCrossRefGoogle Scholar
  5. Deming, D. J.; Graham, R. L.; Denison, M. R.; Baric, R. S. Processing of open reading frame 1a replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication. In: J. Virol. 81 (2007) S. 10280–10291.PubMedCrossRefGoogle Scholar
  6. Diemer, C.; Schneider, M.; Seebach, J.; Quaas, J.; Frösner, G.; Schätzl, H. M.; Gilch, S. Cell type-specific cleavage of nucleocapsid protein by effector caspases during SARS coronavirus infection. In: J. Mol. Biol. 376 (2008) S. 23–34.PubMedCrossRefGoogle Scholar
  7. Enjuanes, L.; Almazán, F.; Sola, I.; Zuñiga, S. Biochemical aspects of coronavirus replication and virus-host interaction. In: Annu. Rev. Microbiol. 60 (2006) S. 211–230.PubMedCrossRefGoogle Scholar
  8. Drosten, C.; Günher S.; Preiser, W.; van der Werf, S.; Brodt, H. R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R. A. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. In: N. Engl. J. Med. 348 (2003) S. 1967–1976.PubMedCrossRefGoogle Scholar
  9. Guo, Y.; Korteweg, C.; McNutt, M. A.; Gu, J. Pathogenetic mechanisms of severe acute respiratory syndrome. In: Virus Res. 133 (2008) S. 4–12.PubMedCrossRefGoogle Scholar
  10. Hofmann, H.; Simmons, G..; Rennekamp, A. J.; Chaipan, C.; Gramberg, T.; Heck, E.; Geier, M.; Wegele, A.; Marzi, A.; Bates, P.; Pöhlmann, S. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. In: J. Virol. 80 (2006) S. 8639–8652.PubMedCrossRefGoogle Scholar
  11. Hofmann, H.; Pyrc, K.; van der Hoek, L.; Geier, M.; Berkhout, B.; Pöhlmann, S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. In: Proc. Natl. Acad. Sci. USA 102 (2005) S. 7988–7993.PubMedCrossRefGoogle Scholar
  12. Hofmann, H.; Pöhlmann, S. Cellular entry of the SARS coronavirus. In: Trends in Microbiology 12 (2004) S. 466–472.PubMedCrossRefGoogle Scholar
  13. Holmes, E. C.; Rambaut, A. Viral evolution and the emergence of SARS coronavirus. In: Phil. Trans. R. Soc. Lond. B 359 (2004) S. 1059–1065.CrossRefGoogle Scholar
  14. Holmes, K. V; Lai, M. M. Coronaviridae: The viruses and their replication. In: Fields, B. N.; Knipe, D. N.; Howley, P. M. (Hrsg.) Virology. 3. Aufl. New York (Raven Press) 1995. S. 1075–1094.Google Scholar
  15. Kennedy, M.; Boedeker, N.; Gibbs, P.; Kania, S. Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis. In: Vet. Microbiol. 81 (2001) S. 227–234.PubMedCrossRefGoogle Scholar
  16. Lai, M. M.; Cavanagh, D. The molecular biology of coronaviruses. In: Adv. Virus Res. 48 (1997) S. 1–100.PubMedCrossRefGoogle Scholar
  17. Lau, Y. L.; Peiris, J. S. M. Pathogenesis of the severe acute respiratory syndrome. In: Curr. Opin. Immunol. 17 (2005) S. 404–410.PubMedCrossRefGoogle Scholar
  18. Luo, Z. L.; Weiss, S. R. Mutational analysis of fusion peptide-like regions in the mouse hepatitis virus strain A59 spike protein. In: Adv. Exp. Med. Biol. 440 (1998) S. 17–23.PubMedGoogle Scholar
  19. Myint, S.; Manley, R.; Cubitt, D. Viruses in bathing waters. In: Lancet 343 (1994) S. 1640 f.CrossRefGoogle Scholar
  20. Narayanan, K.; Huang, C.; Makino, S. SARS coronavirus accessory proteins. In: Virus Res. 133 (2008) S. 113–121.PubMedCrossRefGoogle Scholar
  21. Narayanan, K.; Huang, C.; Lokugamage, K.; Kamitani, W.; Ikegami, T.; Tseng, C. T.; Makino, S. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. In: J. Virol. 82 (2008) S. 4471–4479.PubMedCrossRefGoogle Scholar
  22. Olsen, C. W.; Corapi, W. V.; Jacobson, R. H.; Simkins, R. A.; Saif, L. J.; Scott, F. W. Identification of antigenic sites mediating antibody-dependent enhancement of feline infectious peritonitis virus infectivity. In: J. Gen. Virol. 74 (1993) S. 745–749.PubMedCrossRefGoogle Scholar
  23. Pasternak, A. O.; Spaan, W. J.; Snijder, E. J. Nidovirus transcription: how to make sense …? In: J. Gen. Virol. 87 (2006) S. 1403–1421.PubMedCrossRefGoogle Scholar
  24. Perlman, S.; Netland, J. Coronaviruses post-SARS: update on replication and pathogenesis. In: Nat. Rev. Microbiol. 7 (2009) S. 439–450.PubMedCrossRefGoogle Scholar
  25. Sperry, S. M.; Kazi, L.; Graham, R. L.; Baric, R. S.; Weiss, S. R.; Denison, M. R. Single-amino-acid substitutions in open reading frame (ORF) 1b-nsp14 and ORF 2a proteins of the coronavirus mouse hepatitis virus are attenuating in mice. In: J. Virol. 79 (2005) S. 3391–3400.PubMedCrossRefGoogle Scholar
  26. Stavrinides, J.; Guttman, D. S. Mosaic evolution of the severe acute respiratory syndrome coronavirus. In: J. Virol. 78 (2004) S. 76–82.PubMedCrossRefGoogle Scholar
  27. Surjit, M.; Lal, S. K. The SARS-CoV nucleocapsid protein: a protein with multifarious activities. In: Infect. Genet. Evol. 8 (2008) S. 397–405.PubMedCrossRefGoogle Scholar
  28. Thiel, V.; Weber, F. Interferon and cytokine responses to SARScoronavirus infection. In: Cytokine Growth Factor Rev. 19 (2008) S. 121–132.PubMedCrossRefGoogle Scholar
  29. Thiel, V.; Herold, J.; Schelle, B.; Siddell, S. G. Viral replicase gene products suffice for coronavirus discontinous transcription. In: J. Virol. 75 (2001) S. 6676–6681.PubMedCrossRefGoogle Scholar
  30. Tresnan, D. B.; Holmes, K. V. Feline aminopeptidase N is a receptor for all group I coronaviruses. In: Adv. Exp. Med. Biol. 440 (1998) S. 69–75.PubMedGoogle Scholar
  31. van der Hoek, L. Human coronaviruses: what do they cause? In: Antivir. Ther. 12 (2007) S. 651–658.PubMedGoogle Scholar
  32. Vennema, H.; Poland, A.; Foley, J.; Pedersen, N. C. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. In: J. Virol. 243 (1998) S. 150–157.CrossRefGoogle Scholar
  33. Wang, L. F.; Eaton, B. T. Bats, civets and the emergence of SARS. In: Curr. Top. Microbiol. Immunol. 315 (2007) S. 325–344.PubMedCrossRefGoogle Scholar
  34. Wong, S.; Lau, S.; Woo, P.; Yuen, K. Y. Bats as a continuing source of emerging infections in humans. In: Rev. Med. Virol. 17 (2007) S. 67–91.PubMedCrossRefGoogle Scholar
  35. You, J. H.; Reed, M. L.; Hiscox, J. A. Trafficking motifs in the SARS-coronavirus nucleocapsid protein. In: Biochem. Biophys. Res. Commun. 358 (2007) S. 1015–1020.PubMedCrossRefGoogle Scholar
  36. Zhang, X.; Wu, K.; Wang, D.; Yue, X.; Song, D.; Zhu, Y.; Wu, J. Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-kappaB. In: Virology 365 (2007) S. 324–335.PubMedCrossRefGoogle Scholar
  37. Ziebuhr, J. Molecular biology of severe acute respirator syndrome. In: Curr. Opin. Microbiol. 7 (2004) S. 412–419.PubMedCrossRefGoogle Scholar
  38. Ziebuhr, J.; Snijder, E. J.; Gorbalenya, A. E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. In: J. Gen. Virol. 81 (2000) S. 853–879.PubMedGoogle Scholar
  39. Züst, R.; Cervantes-Barragán, L.; Kuri, T.; Blakqori, G.; Weber, F.; Ludewig, B.; Thiel, V. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. In: PLoS Pathog. 3 (2007) e109.PubMedCrossRefGoogle Scholar

Copyright information

© Spektrum Akademischer Verlag Heidelberg 2010

Authors and Affiliations

  • Susanne Modrow
    • 1
  • Dietrich Falke
    • 2
  • Uwe Truyen
    • 3
  • Hermann Schätzl
    • 4
  1. 1.Institut für Medizinische Mikrobiologie und HygieneUniversität RegensburgDeutschland
  2. 2.Institut für VirologieUniversität MainzDeutschland
  3. 3.Institut für Tierhygiene und öffentliches VeterinärwesenUniversität LeipzigDeutschland
  4. 4.Institut für VirologieUniversität MünchenDeutschland

Personalised recommendations