Using Observed Functional Data to Simulate a Stochastic Process via a Random Multiplicative Cascade Model

  • G. Damiana Costanzo
  • S. De Bartolo
  • F. Dell’Accio
  • G. Trombetta
Conference paper


Considering functional data and an associated binary response, a method based on the definition of special Random Multiplicative Cascades to simulate the underlying stochastic process is proposed. It will be considered a class S of stochastic processes whose realizations are real continuous piecewise linear functions with a constrain on the increment and the family R of all binary responses Y associated to a process X in S. Considering data from a continuous phenomenon evolving in a time interval [0, T] which can be simulated by a pair (X, Y) ∈ S × R, a prediction tool which would make it possible to predict Y at each point of [0, T] is introduced. An application to data from an industrial kneading process is considered.


functional data stochastic process multiplicative cascade 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Thanks are due for their support to Food Science & Engineering Interdepartmental Center of University of Calabria and to L.I.P.A.C., Calabrian Laboratory of Food Process Engineering (Regione Calabria APQ-Ricerca Scientifica e Innovazione Tecnologica I atto integrativo, Azione 2 laboratori pubblici di ricerca mission oriented interfiliera).


  1. COSTANZO, G. D., PREDA, C., SAPORTA, G. (2006): Anticipated Prediction in Discriminant Analysis on Functional Data for binary response. In: Rizzi, A., Vichi, M. (eds.) COMPSTAT’2006 Proceedings, pp. 821-828. Springer, Heidelberg.Google Scholar
  2. COSTANZO, G. D., DELL’ACCIO, F., TROMBETTA, G. (2009): Adjustment curves for binary responses associated to stochastic processes. Dipartimento di Economia e Statistica, Working paper n. 17, Anno 2009, submitted.Google Scholar
  3. ESCABIAS, A.M., AGUILERA, A. M. and VALDERRAMA, M.J. (2004): Principal component estimation of functional logistic regression: discussion of two different approaches. Journal of Nonparametric Statistics 16:365-384.MathSciNetzbMATHCrossRefGoogle Scholar
  4. ESCABIAS, A.M., AGUILERA, A. M. and VALDERRAMA, M.J. (2007): Functional PLS logit regression model. Computational Statistics and Data Analysis 51:4891-4902.MathSciNetzbMATHCrossRefGoogle Scholar
  5. FEDER, J. (1988): Fractals. Plenum.Google Scholar
  6. FUCHSLIN, R.M., SHEN, Y. and MEIER, P.F. (2001): An efficient algorithm to determine fractal dimensions of points sets. Physics Letters A, 285, pp. 69-75. MathSciNetCrossRefGoogle Scholar
  7. GUPTA, V.K., WAYMIRE, E. (1993): A statistical analysis of mesoscale rainfall as a random cascade. J. Appl. Meteor. 32:251-267.zbMATHCrossRefGoogle Scholar
  8. JAMES, G. (2002) Generalized Linear Models with Functional Predictor Variables, Journal of the Royal Statistical Society Series B 64: 411-432. zbMATHCrossRefGoogle Scholar
  9. KOLMOGOROV, A. N. (1941): The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30 :9-13. Google Scholar
  10. KOLMOGOROV, A. N. (1962): A refinement of previous hypothesis concerning the local structure of turbulence in incompressible viscous fluid at high Reynold’s number. J. Fluid. Mech. 13 :82-85. MathSciNetzbMATHCrossRefGoogle Scholar
  11. MANDELBROT, B. (1998): Fractals and scaling in finance: Discontinuity, concentration, risk. Springer-Verlag, New York.Google Scholar
  12. OSSIANDER, M., WAYMIRE, C.E. (2000): Statistical Estimation for Multiplicative Cascades. The Annals od Statistics, 28 (6):1533-1560.MathSciNetzbMATHCrossRefGoogle Scholar
  13. OSSIANDER, M., WAYMIRE, C.E. (2002): On Estimation Theory for Multiplicative Cascades. Sankhyā, Series A, 64:323-343.MathSciNetzbMATHGoogle Scholar
  14. PREDA C., SAPORTA, G. (2005): PLS regression on a stochastic process. Computational Satistics and Data Analysis, 48:149-158.MathSciNetzbMATHCrossRefGoogle Scholar
  15. PREDA, C., SAPORTA, G., LEVEDER, C. (2007): PLS classification of functional data. Computational Satistics, 22:223-235.MathSciNetzbMATHCrossRefGoogle Scholar
  16. RATCLIFFE, S.J., LEADER, L.R., and HELLER G.Z. (2002a): Functional data analysis with application to periodically stimulated fetal heart rate data: I. Functional regression. Statistics in Medicine 21:1103-1114.CrossRefGoogle Scholar
  17. RATCLIFFE, S.J., LEADER, L.R., and HELLER G.Z. (2002b): Functional data analysis with application to periodically stimulated fetal heart rate data: II. Functional logistic regression. Statistics in Medicine 21:1115-1127.CrossRefGoogle Scholar
  18. RESNICK, S., SAMORODNITSKY, G., GILBERT, A., WILLINGER, W. (2003): Wavelet analysis of conservative cascades. Bernoulli, 9:97-135.MathSciNetzbMATHCrossRefGoogle Scholar
  19. SAPORTA, G., COSTANZO, G. D., PREDA, C., (2007): Linear methods for regression and classification with functional data. In: IASC-ARS’07 Proceedings, Special Conf., Seoul, 2007 (ref. CEDRIC 1234):Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • G. Damiana Costanzo
    • 1
  • S. De Bartolo
    • 2
  • F. Dell’Accio
    • 3
  • G. Trombetta
    • 3
  1. 1.Dip. Di Economia e StatisticaUNICALArcavacata di Rende (CS)Italy
  2. 2.Dip. di Difesa del Suolo V. MaroneUNICALArcavacata di Rende (CS)Italy
  3. 3.Dip. di MatematicaUNICALArcavacata di Rende (CS)Italy

Personalised recommendations