Skip to main content

Bayesian Linear Regression — Different Conjugate Models and Their (In)Sensitivity to Prior-Data Conflict

  • Chapter
  • First Online:
Statistical Modelling and Regression Structures

Abstract

The paper is concerned with Bayesian analysis under prior-data conflict, i.e. the situation when observed data are rather unexpected under the prior (and the sample size is not large enough to eliminate the influence of the prior). Two approaches for Bayesian linear regression modeling based on conjugate priors are considered in detail, namely the standard approach also described in Fahrmeir et al. (2007) and an alternative adoption of the general construction procedure for exponential family sampling models. We recognize that – in contrast to some standard i.i.d. models like the scaled normal model and the Beta-Binomial / Dirichlet-Multinomial model, where prior-data conflict is completely ignored – the models may show some reaction to prior-data conflict, however in a rather unspecific way. Finally we briefly sketch the extension to a corresponding imprecise probability model, where, by considering sets of prior distributions instead of a single prior, prior-data conflict can be handled in a very appealing and intuitive way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Augustin, T., Coolen, F. P., Moral, S. & Troffaes, M. C. (eds) (2009). ISIPTA‘09: Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications, Durham University, Durham, UK, July 2009, SIPTA.

    Google Scholar 

  • Augustin, T. & Hable, R. (2009). On the impact of robust statistics on imprecise probability models: a review, ICOSSAR‘09: The 10th International Conference on Structural Safety and Reliability, Osaka. To appear.

    Google Scholar 

  • Bernard, J.-M. (2009). Special issue on the Imprecise Dirichlet Model. International Journal of Approximate Reasoning.

    Google Scholar 

  • Bernardo, J. M. & Smith, A. F. M. (1994). Bayesian Theory, Wiley, Chichester.

    Book  MATH  Google Scholar 

  • Bousquet, N. (2008). Diagnostic of prior-data agreement in applied bayesian analysis, 35: 1011–1029.

    MATH  Google Scholar 

  • Coolen-Schrijner, P., Coolen, F., Troffaes, M. & Augustin, T. (2009). Special Issue on Statistical Theory and Practice with Imprecision, Journal of Statistical Theory and Practice 3.

    Google Scholar 

  • de Cooman, G., Vejnarová, J. & Zaffalon, M. (eds) (2007). ISIPTA‘07: Proceedings of the Fifth International Symposium on Imprecise Probabilities and Their Applications, Charles University, Prague, Czech Republic, July 2007, SIPTA.

    Google Scholar 

  • Ellsberg, D. (1961). Risk, ambiguity, and the Savage axioms, Q. J. Econ. pp. 643–669.

    Google Scholar 

  • Evans, M. & Moshonov, H. (2006). Checking for prior-data conflict, Bayesian Analysis 1: 893–914.

    Article  MathSciNet  Google Scholar 

  • Fahrmeir, L. & Kaufmann, H. (1985). Consistency and asymptotic normality of the maximum-likelihood estimator in generalized linear-models, Annals of Statistics 13: 342–368.

    Article  MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L. & Kneib, T. (2006). Structured additive regression for categorial space-time data: A mixed model approach, Biometrics 62: 109–118.

    Article  MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L. & Kneib, T. (2009). Propriety of posteriors in structured additive regression models: Theory and empirical evidence, Journal of Statistical Planning and Inference 139: 843–859.

    Article  MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L., Kneib, T. & Lang, S. (2007). Regression. Modelle, Methoden und Anwendungen, Springer, New York.

    MATH  Google Scholar 

  • Fahrmeir, L. & Raach, A. (2007). A Bayesian semiparametric latent variable model für mixed responses, Psychometrika 72: 327–346.

    Article  MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L. & Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized Linear Models, Springer.

    Google Scholar 

  • Higgins, J. P. T. & Whitehead, A. (1996). Borrowing strength from external trials in a meta-analysis, Statistics in Medicine 15: 2733–2749.

    Article  Google Scholar 

  • Hsu, M., Bhatt, M., Adolphs, R., Tranel, D. & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision-making, Science 310: 1680–1683.

    Article  Google Scholar 

  • Huber, P. J. & Strassen, V. (1973). Minimax tests and the Neyman-Pearson lemma for capacities, The Annals of Statistics 1: 251–263.

    Article  MATH  MathSciNet  Google Scholar 

  • Kauermann, R., Krivobokova, T. & Fahrmeir, L. (2009). Some asymptotic results on generalized penalized spline smooting, J. Roy. Statist. Soc. Ser. B 71: 487–503.

    Article  Google Scholar 

  • Klir, G. J. & Wierman, M. J. (1999). Uncertainty-based Information. Elements of Generalized Information Theory, Physika, Heidelberg.

    MATH  Google Scholar 

  • Kneib, T. & Fahrmeir, L. (2007). A mixed model approach for geoadditive hazard regression for interval-censored survival times, 34: 207–228.

    MATH  MathSciNet  Google Scholar 

  • Kyburg, H. (1987). Logic of statistical reasoning, in S. Kotz, N. L. Johnson & C. B. Read (eds), Encyclopedia of Statistical Sciences, Vol. 5, Wiley-Interscience, New York, pp. 117–122.

    Google Scholar 

  • O’Hagan, A. (1994). Bayesian Inference, Vol. 2B of Kendall′s Advanced Theory of Statistics, Arnold, London.

    Google Scholar 

  • Quaeghebeur, E. & de Cooman, G. (2005). Imprecise probability models for inference in exponential families, in F. G. Cozman, R. Nau & T. Seidenfeld (eds), ISIPTA ‘05: Proc. 4th Int. Symp. on Imprecise Probabilities and Their Applications, pp. 287–296.

    Google Scholar 

  • Ríos Insua, D. & Ruggeri, F. (eds) (2000). Robust Bayesian Analysis, Springer, New York.

    MATH  Google Scholar 

  • Scheipl, F. & Kneib, T. (2009). Locally adaptive Bayesian P-splines with a normal-exponential-gamma prior, Computational Statistics & Data Analysis 53: 3533–3552.

    Article  Google Scholar 

  • Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, London.

    MATH  Google Scholar 

  • Walley, P. (1996). Inferences from multinomial data: learning about a bag of marbles, Journal of the Royal Statistical Society. Series B. Methodological 58: 3–57.

    MATH  MathSciNet  Google Scholar 

  • Walter, G. (2006). Robuste Bayes-Regression mit Mengen von Prioris — Ein Beitrag zur Statistik unter komplexer Unsicherheit, Master’s thesis, Department of Statistics, LMU Munich. Diploma thesis. http://www.stat.uni-muenchen.de/˜walter.

  • Walter, G. & Augustin, T. (2009). Imprecision and prior-data conflict in generalized Bayesian inference., Journal of Statistical Theory and Practice 3: 255–271.

    Google Scholar 

  • Walter, G., Augustin, T. & Peters, A. (2007). Linear regression analysis under sets of conjugate priors, in G. de Cooman, J. Vejnarová & M. Zaffalon (eds), ISIPTA ‘07: Proc. 5th Int. Symp. on Imprecise Probabilities and Their Applications, pp. 445–455.

    Google Scholar 

  • Weichselberger, K. (2001). Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung I. Intervallwahrscheinlichkeit als umfassendes Konzept, Physika, Heidelberg.

    MATH  Google Scholar 

Download references

Acknowledgments

We are very grateful to Erik Quaeghebeur and Frank Coolen for intensive discussions on foundations of generalized Bayesian inference, and to Thomas Kneib for help at several stages of writing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gero Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walter, G., Augustin, T. (2010). Bayesian Linear Regression — Different Conjugate Models and Their (In)Sensitivity to Prior-Data Conflict. In: Kneib, T., Tutz, G. (eds) Statistical Modelling and Regression Structures. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2413-1_4

Download citation

Publish with us

Policies and ethics