Fractal Geometry for Measuring and Modelling Urban Patterns

  • Pierre Frankhauser

Abstract

Urban growth generates nowadays patterns, which look rather irregular. Planning policy regrets the lack of compactness and density of these agglomerations, but controlling urban sprawl turns out to be difficult. Obviously a new type of spatial organisation emerges, which is rather the result of a self-organisation process to which a high number of social agents contribute. In the present contribution we focus on the use of fractal geometry which turned out to be a powerful instrument for describing the morphology of these patterns.

After an introduction about the context of research, fractal models are presented, which serve as reference models for better understanding the spatial organisation of settlement patterns. Then the methodology for measuring their morphology by means of fractal parameters is explained. Moreover different peculiar topics are considered like a specific approach of urban boundaries. Then an overview is given over results obtained for a couple of agglomerations in different European countries. The interpretation of these results allows establishing links between urban planning policy and pattern morphology. Applying the idea of self-organisation leads to introducing a fractal order parameter for studying the emergent fractal order in urban patterns. The presentation of these quantitative results will be completed by some reflections about how planning concepts based on fractal geometry may help to manage more efficiently urban sprawl.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen P, Sanglier M (1981) Urban evolution, self-organisation and decision making. Environment and Planning, 13:167–183CrossRefGoogle Scholar
  2. Batty M (1991) Generating urban forms from diffusive growth. Environment and Planning A 23: 511–544CrossRefGoogle Scholar
  3. Batty M, Longley PA (1986) The fractal simulation of Urban Structure. Environment and Planning A 18: 1143–1179CrossRefGoogle Scholar
  4. Batty M, Longley P (1994) Fractal Cities. A Geometry of Form and Function. Academic Press, San Diego, p. 394Google Scholar
  5. Batty M, Kim SK (1992) Form Follows Function: Reformulating Urban Population Density Functions. Urban Studies 29:7: 1043–1070CrossRefGoogle Scholar
  6. Batty M, Xie Y (1996) Preliminary evidence for a theory of the fractal city. Environment and Planning A 28: 1745–1762CrossRefGoogle Scholar
  7. Benguigui L, Czamanski D, Marinov M, Portugali J (2000) When and where is a city fractal? Environment and Planning B 27:4: 507–519CrossRefGoogle Scholar
  8. Cavailhès J, Frankhauser P, Peeters D, Thomas I (2004) Where Alonso meets Sierpinski: an urban economic model of a fractal metropolitan area. Environment and Planning A 36: 1471–1498CrossRefGoogle Scholar
  9. Christaller W (1933) Die zentralen Orte in Süddeutschland. Fischer, JenaGoogle Scholar
  10. De Keersmaecker, ML, Frankhauser P, Thomas I (2003) Using Fractal Dimensions for Characterizing Intra-Urban Diversity: The Example of Brussels. Geographical Analysis 35: 310–328CrossRefGoogle Scholar
  11. Dubois-Taine G, Chalas Y (eds) (1997) La ville émergente. Edition de l’Aube, ParisGoogle Scholar
  12. Dubois-Taine G (coord. by) (2002) La ville émergente, Résultats de Recherche. Report PUCA, Ministère de l’Equipement, des Transports, du Logement, du Tourisme et de la Mer, Paris, p 205Google Scholar
  13. Dubois-Taine G (ed) (2004) European Cities — Insights on outskirts, Report COST Action 10 Urban Civil Engineering. Vol 1: From Helsinki to Nicosia. Eleven Case Studies & Synthesis, BrusselsGoogle Scholar
  14. Fouchier V (1995) La densification: une comparaison internationale entre politiques contrastées. Les Annales de la Recherche Urbaine 67: 94–108Google Scholar
  15. Frank H (1987) Idee, Prozess, Ergebnis. Die Reparatur und Rekonstruktion der Stadt. In: Die überwindung der Stadtbaukunst, Internationale Bauausstellung Berlin. Fröhlich und Kaufmann, BerlinGoogle Scholar
  16. Frankhauser P (1988) Fractal aspects of urban systems. Beiträge zum ersten Internationalen Symposium des SFB 230 Teil 1. SFB 230, Stuttgart, pp 67–76Google Scholar
  17. Frankhauser P (1994) La fractalité des structures urbaines. Collection Villes, Anthropos, ParisGoogle Scholar
  18. Frankhauser P (1998) The fractal approach. A new tool for the spatial analysis of urban agglomerations. Population: an English selection, special issue New Methododlogical Approaches in Social Sciences, pp 205–240Google Scholar
  19. Frankhauser P, Genre-Grandpierre C (1998) La géométrie fractale, un nouvel outil pour évaluer le rôle de la morphologie des réseaux de transport public dans l’organisation spatiale des agglomérations. Les Cahiers Scientifiques du Transport 33: 41–78Google Scholar
  20. Frankhauser P (2000). La fragmentation des espaces urbains et périurbains-une approche fractale. Structures des villes, entreprise et marchés urbains, l’Harmattan, collection Emploi, Industrie et Territoire, ParisGoogle Scholar
  21. Frankhauser P (coord. by) (2003) Morphologie des villes émergentes en Europe à travers les analyses fractales. Research Report, Université de Franche-Comté, UMR 6049 THEMA, p 240Google Scholar
  22. Frankhauser P (2004) Comparing the morphology of urban patterns in Europe — a fractal approach. European Cities — Insights on outskirts, Report COST Action 10 Urban Civil Engineering, vol 2: Structures, Borsdorf and Zembri, Brussels, pp 79–105Google Scholar
  23. Frankhauser P, Tannier C (2005) A multi-scale morphological approach for delimiting urban areas. Working-paper presented at the Conference “Computers in Urban Planning and Urban Management”, LondonGoogle Scholar
  24. Gouyet JF (1992) Physique et structures fractales. Masson, ParisGoogle Scholar
  25. Haag G, Dendrinos DS (1983) Towards a stochastic dynamical theory of lmocation: a nonlinear migration process. Geographical Analysis 15: 269–286CrossRefGoogle Scholar
  26. Haken H (1978) Synergetics: An Introduction. Springer-Verlag, BerlinGoogle Scholar
  27. Humpert K, Brenner K, Bohm H (1991) Großstädtische Agglomerationen,-ein globales Problem. Natürliche Konstruktionen, vol 1, SFB 230, StuttgartGoogle Scholar
  28. Humpert K, Brenner K (1992) Das Phänomen der Stadt als fraktale Struktur. In: Das Phänomen der Stadt. Berichte aus Forschung and Lehre, Städtebauliches Institut, Universität Stuttgart, pp 223–269Google Scholar
  29. Humpert K, Brenner K, Becker S (2002) Fundamental Principles of Urban Growth. An Analysis of 57 cities. Müller und Busmann, WuppertalGoogle Scholar
  30. Le Bras H (1993) La planète au village. Editions de l’Aube, ParisGoogle Scholar
  31. Longley P, Mesev V (2000) On the Measurement and Generalisation of Urban Form. Environment and Planning A 32:3: 471–488CrossRefGoogle Scholar
  32. Mandelbrot B (1983) The Fractal Geometry of Nature. Freeman, San FranciscoGoogle Scholar
  33. Pumain D, Saint Julien T, Sanders L (1989) Ville et auto-organisation. Economica, ParisGoogle Scholar
  34. Rémy J (1994) La ville: réseau alvéolaire et mobilité spatiale. In: Pellegrino P (ed) Figures architecturales, formes urbaines. Anthropos, ParisGoogle Scholar
  35. Schöfl G (1986) Minimalnetze. arcus 2 Google Scholar
  36. Schweitzer F, Steinbrick J (1998) Estimation of Megacity Growth. Simple rules versus complex phenomena. Applied Geography 18:1: 69–81CrossRefGoogle Scholar
  37. Schweitzer F, Steinbrick J (2002) Analysis and computer simulations of urban cluster distribution. In: Humpert K, Becker S, Brenner K (eds) Fundamental Principles of Urban Growth. Müller und Busmann, Wuppertal, pp 142–157Google Scholar
  38. Schweitzer F (2003) Brownian agents and Active Particles. Springer, BerlinGoogle Scholar
  39. Shen G (2002) Fractal dimension and fractal growth of urbanized areas. International Journal of Geographical Information Science 16:5: 519–437CrossRefGoogle Scholar
  40. Sievert T (1997) Zwischenstadt. Bauwelt Fundamente 118: 193Google Scholar
  41. Tannier C, Pumain D (2005) Fractals in urban geography: a general outline and an empirical example. Cybergeo 307: 22 http://www.cybergeo.presse.frGoogle Scholar
  42. Thomas I, Frankhauser P (2005) Fractal dimension, morphology of the built-up surfaces and land-use planning. Paper presented at the 45th Congress of the European Regional Science Association, AmsterdamGoogle Scholar
  43. Weidlich W, Munz M (1990) Settlement formation. Part 1: A Dynamic Theory; Part 2: Numerical Simulation. The Annals of Regional Science 24: 83–106, 177–196CrossRefGoogle Scholar
  44. White R, Engelen G (1993) Cellular Automata and Fractal Urban Form: A cellular modelling approach to the evolution of urban land-use patterns. Environment and Planning A 25: 1175–199CrossRefGoogle Scholar
  45. White R, Engelen G (1994) Urban Systems Dynamics and Cellular Automata: Fractal Structures between Order and Chaos. Chaos, Solitons and Fractals 4:4: 563–583CrossRefGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg and Accademia di Architettura, Mendrisio, Switzerland 2008

Authors and Affiliations

  • Pierre Frankhauser
    • 1
  1. 1.Laboratoire Théoriser et Modéliser pour Aménager (ThéMA), UMR CNRS 6049Université de Franche-ComtéBesançonFrance

Personalised recommendations