Advertisement

Hybrid Architecture for Autonomous Robots, Based on Representation, Perception and Intelligent Control

  • Dominique Luzeaux
  • André Dalgalarrondo
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 113)

Abstract

This chapter presents an Hybrid Architecture based on Representations, Perception and Intelligent Control (HARPIC). It includes reactive and deliberative behaviors, which we have developed to confer autonomy to unmanned robotics systems. Two main features characterize our work: on the one hand the ability for the robot to control its own autonomy, and on the other hand the capacity to evolve and to learn.

Keywords

robotics control architecture perception selection intelligent system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture for autonomy. The International Journal of Robotics Research, 17–4: 315–337, 1998.CrossRefGoogle Scholar
  2. 2.
    J. S. Albus. 4-D/RCS reference model architecture for unmanned ground vehicles. In SPIE session on Unmanned Ground Vehicle Technology, Orlando Florida, april 1999.Google Scholar
  3. 3.
    R.C. Arkin. Behavior-based robotics. A Bradford Book, The MIT Press, 1998.Google Scholar
  4. 4.
    A. Berthoz. Le sens du mouvement. Éditions Odile Jacob, 1997.Google Scholar
  5. 5.
    M.A. Boden, editor. The philosophy of artificial life. Oxford Readings in Philosophy, 1996.Google Scholar
  6. 6.
    J. Connell. SSS: a hybrid architecture applied to robot navigation. In IEEE Conference on Robotics and Automation, Nice, France, 1992.Google Scholar
  7. 7.
    A. Dalgalarrondo and D. Luzeaux. Rule-based incremental control within an active vision framework. In 4 th Int. Conf. on Control, Automation, Robotics and Vision, Westin Stamford, Singapore, 1996.Google Scholar
  8. 8.
    E. Gat. Integrating planning and reacting in a heterogeneous asynchronous architecture for controlling real-world mobile robots. In AAAI-92, San Jose, CA, 1992.Google Scholar
  9. 9.
    S. Hamad. The symbol grounding problem. Physica D, 42: 335–346, 1990.CrossRefGoogle Scholar
  10. 10.
    P.J. Hayes. The frame problem and related problems in artificial intelligence. In J. Allen, J. Hendler, and A. Tate, editors, Readings in Planning, pages 588–595. Morgan Kaufmann Publishers, Inc., 1990.Google Scholar
  11. 11.
    I. Horswill. Specialization of perceptual processes. Ph.D. Dissertation,MIT, Cambridge, MA, 1993.Google Scholar
  12. 12.
    L. Kam. Approximation multifractale guidée par la reconnaissance. Doctorat de l’Université Paris XI, Orsay, 2000.Google Scholar
  13. 13.
    S.M. Kosslyn. Image and Brain. A Bradford Book, The MIT Press, 1992.Google Scholar
  14. 14.
    B. Kuipers. Qualitative Reasoning: Modeling and Simulation with incomplete knowledge. The MIT Press, 1994.Google Scholar
  15. 15.
    D. Luzeaux. Let’s learn to control a system! In IEEE International Conference on Systems Man Cybernetics, Le Touquet, France, 1993.Google Scholar
  16. 16.
    D. Luzeaux. Learning knowledge-based systems and control of complex systems. In 15th IMACS World Congress, Berlin, Germany, 1997.Google Scholar
  17. 17.
    D. Luzeaux. Mixed filtering and intelligent control for target tracking with mobile sensors. In 29th Southeastern Symposium on System Theory, Cookeville, TN, USA, 1997.Google Scholar
  18. 18.
    D. Luzeaux. Catastrophes as a way to build up knowledge for learning robots. In 16th IMACS World Congress, Lausanne, Switzerland, 2000.Google Scholar
  19. 19.
    D. Luzeaux and A. Dalgalarrondo. Assessment of image processing algorithms as the keystone of autonomous robot control architectures. In J. Blanc-Talon and D. Popescu, editors, Imaging and Vision Systems: Theory, Assessment and Applications. NOVA Science Books, New York, 2001.Google Scholar
  20. 20.
    D. Luzeaux and B. Zavidovique. Process control and machine learning: rule-based incremental control. IEEE Transactions on Automatic Control, 39 (6), 1994.Google Scholar
  21. 21.
    P. Pirjanian. Behavior coordination mechanisms: state-of-the-art. Technical report, University of Southern California, TR IRIS-99–375, 1999.Google Scholar
  22. 22.
    P. Sellem; E. Amram, and D. Luzeaux. Open multi-agent architecture extended to distributed autonomous robotic systems. In SPIE Aerosense’00, Conference on Unmanned Ground Vehicle Technology II, Orlando, FL, USA, 2000.Google Scholar
  23. 23.
    O. Sigaud and D. Luzeaux. Learning hierarchical controllers for situated agents. In Proceedings of the 14th International Congress on Cybernetics, Bruxelles, Belgium, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Dominique Luzeaux
    • 1
  • André Dalgalarrondo
    • 1
  1. 1.DCA/Centre Technique d’ArcueilArcueil CedexFrance

Personalised recommendations