Common Cold pp 187-196 | Cite as

Host defenses

  • Sherif Beniameen Mossad
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)


Repeated episodes of viral upper respiratory tract infections occur anywhere from four to eight times per year in healthy individuals Local and systemic defense mechanisms exist to battle respiratory tract pathogens. Clinical manifestations are mainly due to host inflammatory response. Unfortunately, the host defense mechanisms are very often not sufficient to prevent subsequent/repeated episodes of infections(s). Further insight into the interaction of infectious agent and host immune response, genetic factors, and environmental factors is needed for a better understanding of why humans repeatedly and frequently suffer from infections with respiratory agents and develop a disease syndrome known as common cold.


Respiratory Syncytial Virus Fluticasone Propionate Allergy Clin Immunol Respiratory Syncytial Virus Infection Common Cold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kirchberger S, Majdic O Stockl J (2007) Modulation of the immune system by human rhinoviruses. Int Arch Allergy Immunol 142:1–10CrossRefPubMedGoogle Scholar
  2. 2.
    Eccles R (2002) An explanation for the seasonality of acute upper respiratory tract viral infections. Acta Otolaryngol 122:183–191CrossRefPubMedGoogle Scholar
  3. 3.
    Sano H (1992) Influence of environmental temperature (cold exposure) on nasal resistance. Nippon Jibiinkoka Gakkai Kaiho [Journal of the Oto-Rhino-Laryngological Society of Japan] 95:1785–1799Google Scholar
  4. 4.
    Alho OP (2004) Nasal airflow, mucociliary clearance, and sinus functioning during viral colds: Effects of allergic rhinitis and susceptibility to recurrent sinusitis. Am J Rhinol 18:349–355PubMedGoogle Scholar
  5. 5.
    Pedersen M, Sakakura Y, Winther B, Brofeldt S, Mygind N (1983) Nasal mucociliary transport, number of ciliated cells, and beating pattern in naturally acquired common colds. Eur J Respir Dis S128:355–365Google Scholar
  6. 6.
    Passali D, Bellussi L, Lauriello M (1995) The rheological characteristics of nasal mucus in patients with rhinitis. Eur Arch Otorhinolaryngol 252:348–352CrossRefPubMedGoogle Scholar
  7. 7.
    Lindberg S, Cervin A, Runer T (1997) Nitric oxide (NO) productionin the upper airways is decreased in chronic sinusitis. Acta Oto-Laryngol 117:113–117CrossRefGoogle Scholar
  8. 8.
    Sanders SP, Proud D, Permutt S, Siekierski ES, Yachechko R, Liu MC (2004) Role of nasal nitric oxide in the resolution of experimental rhinovirus infection. J Allergy Clin Immunol 113:697–702CrossRefPubMedGoogle Scholar
  9. 9.
    Brandtzaeg P (2003) Mucosal immunity: Integration between mother and the breast-fed infant. Vaccine 21:3382–3388CrossRefPubMedGoogle Scholar
  10. 10.
    Salvi S, Holgate ST (1999) Could the airway epithelium play an important role in mucosal immunoglobulin A production? Clin Exp Allergy 12:1597–1605CrossRefGoogle Scholar
  11. 11.
    Brandtzaeg P, Farstad IN, Johansen FE, Morton HC, Nordeerhaug IN, Yamanaka T (1999) The B-cell system of human mucosae and exocrine glands. Immunol Rev 171:45–87CrossRefPubMedGoogle Scholar
  12. 12.
    Lenander-Lumikari M, Puhakka T, Makela MJ, Vilja P, Ruuskanen O, Tenovuo J (1999) Effects of the common cold and intranasal fluticasone propionate treatment on mucosal host defense assessed by human saliva. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87:695–699CrossRefPubMedGoogle Scholar
  13. 13.
    Chaushu S, Yefenof E, Becker A, Shapira J, Chaushu G (2002) A link between parotid salivary Ig level and recurrent respiratory infections in young Down’s syndrome patients. Oral Microbiol Immunol 17:172–176CrossRefPubMedGoogle Scholar
  14. 14.
    Proud D, Sanders SP, Wiehler S (2004) Human rhinovirus infection induces airway epithelial cell production of human beta-defensin 2 both In vitro and in vivo. J Immunol 172:4637–4645PubMedGoogle Scholar
  15. 15.
    Gill MA, Long K, Kwon T, Muniz L, Mejias A, Connolly J, Roy L, Banchereau J, Ramilo O (2008) Differential recruitment of dendritic cells and monocytes to respiratory mucosal sites in children with influenza virus or respiratory syncytial virus infection. J Infect Dis 198:1667–1675CrossRefPubMedGoogle Scholar
  16. 16.
    Goldman AS (1993) The immune system of human milk: Antimicrobial anti-inflammatory and immunomodulating properties. Pediatr Infect Dis J 12:664–671PubMedCrossRefGoogle Scholar
  17. 17.
    Wold AE, Hanson LA (1994) Defense factors in human milk. Curr Opin Gastroenterol 10:652–658CrossRefGoogle Scholar
  18. 18.
    Ip S, Chung M, Raman G, Chew P, Magula N, DeVine D, Trikalinos T, Lau J (2007) Breastfeeding and maternal and infant health outcomes in developed countries. Evid Rep Technol Assess (Full Report) 153:1–186Google Scholar
  19. 19.
    Couch RB (1996) Rhinoviruses. In: BN Fields, DM Knipe, PM Howley et al. (eds): Fields Virology, 3rd edn. Lippincott-Raven, New York, 713–734Google Scholar
  20. 20.
    Heikkinen T, Jarvinen A (2003) The common cold. Lancet 361:51–59CrossRefPubMedGoogle Scholar
  21. 21.
    van Cauwenberge PB, van Kempen MJ, Bachert C (2000) The common cold at the turn of the millennium. Am J Rhinol 14:339–343CrossRefPubMedGoogle Scholar
  22. 22.
    Katze MG, He Y, Gale M Jr (2002) Viruses and interferon: A fight for supremacy. Nat Rev Immunol 2:675–687CrossRefPubMedGoogle Scholar
  23. 23.
    Gwaltney JM Jr, Winther B, Patrie JT, Hendley JO (2002) Combined antiviral-antimediator treatment for the common cold. J Infect Dis 186:147–154CrossRefPubMedGoogle Scholar
  24. 24.
    Pitkaranta A, Hayden FG (1998) Rhinoviruses: Important respiratory pathogens. Ann Med 30:529–537CrossRefPubMedGoogle Scholar
  25. 25.
    Wimalasundera SS, Katz DR, Chain BM (1997) Characterization of the T cell response to human rhinovirus in children: Implications for understanding the immunopathology of the common cold. J Infect Dis 176:755–759CrossRefPubMedGoogle Scholar
  26. 26.
    Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, Holgate ST, Davies DE (2005) Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 201: 937–947CrossRefPubMedGoogle Scholar
  27. 27.
    Hewat EA, Marlovits TC, Blaas D (1998) Structure of a neutralizing antibody bound monovalently to human rhinovirus 2. J Virol 72:4396–4402PubMedGoogle Scholar
  28. 28.
    Alper CM, Doyle WJ, Skoner DP, Buchman CA, Seroky JT, Gwaltney JM, Cohen SA (1996) Prechallenge antibodies: Moderators of infection rate, signs, and symptoms in adults experimentally challenged with rhinovirus type 39. Laryngoscope 106:1298–1305CrossRefPubMedGoogle Scholar
  29. 29.
    Collins PL, Crowe JEJ (2007) Respiratory syncytial virus and metapneumovirus. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds): Fields Virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, 1601–1646Google Scholar
  30. 30.
    Kim CK, Kim SW, Park CS, Kim BI, Kang H, Koh YY (2003) Bronchoalveolar lavage cytokine profiles in acute asthma and acute bronchiolitis. J Allergy Clin Immunol 112:64–71CrossRefPubMedGoogle Scholar
  31. 31.
    van Kempen M, Bachert C, van Cauwenberge P (1999) An update on the pathophysiology of rhinovirus upper respiratory tract infections. Rhinology 37: 97–103PubMedGoogle Scholar
  32. 32.
    Eccles R (2005) Understanding the symptoms of the common cold and influenza. Lancet Infect Dis 5:718–725CrossRefPubMedGoogle Scholar
  33. 33.
    Helminen M, Nuolivirta K, Virta M, Halkosalo A, Korppi M, Vesikari T, Hurme M (2008) IL-10 gene polymorphism at-1082 A/G is associated with severe rhinovirus bronchiolitis in infants. Pediatr Pulmonol 43:391–395CrossRefPubMedGoogle Scholar
  34. 34.
    Turner RB, Hayden FG (2003) Rhinovirus. In: H Ruebsamen-Waigmann, K Deres, G Hewlett, R Welker (eds): Viral infections and treatment. Marcel Dekker, New York, 139–164Google Scholar
  35. 35.
    Wyde PR, Piedra PA (2003) Respiratory syncytial virus. In: H Ruebsamen Waigmann, K Deres, G Hewlett, R Welker (eds): Viral infections and treatment. Marcel Dekker, New York, 91–137Google Scholar
  36. 36.
    Ginsberg HS, Gold E, Jordan WS Jr, Katz S, Badger GF, Dingle JH (1955) Relations of the new respiratory agents to acute respiratory diseases. Am J Public Health 45:915–922CrossRefGoogle Scholar
  37. 37.
    Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA et al. (2003) Identification of a novel coronavirus in patients with acute respiratory syndrome. N Engl J Med 348:1967–1976CrossRefPubMedGoogle Scholar
  38. 38.
    Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W et al. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966CrossRefPubMedGoogle Scholar
  39. 39.
    Cohen S, Doyle WJ, Skoner DP, Rabin BS, Gwaltney JM Jr (1997) Social ties and susceptibility to the common cold. JAMA 277:1940–1944CrossRefPubMedGoogle Scholar
  40. 40.
    Chubak J, McTiernan A, Sorensen B, Wener MH, Yasui Y, Velasquez M, Wood B, Rajan KB, Wetmore CM, Potter JD, Ulrich CM (2006) Moderate-intensity exercise reduces the incidence of colds among postmenopausal women. Am J Med 119:937–942CrossRefPubMedGoogle Scholar
  41. 41.
    Spence L, Brown WJ, Pyne DB, Nissen MD, Sloots TP, McCormack JG, Locke AS, Fricker PA (2007) Incidence, etiology, and symptomatology of upper respiratory illness in elite athletes. Med Sci Sport Exerc 39:577–586CrossRefGoogle Scholar
  42. 42.
    Makela MJ, Puhakka T, Ruuskanen O, Leinonen M, Saikku P, Kimpimäki M, Blomqvist S, Hyypiä T, Arstila P (1998) Viruses and bacteria in the etiology of the common cold. J Clin Microbiol 36:539–542PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Sherif Beniameen Mossad
    • 1
  1. 1.Department of Infectious Diseases, Section of Transplant Infectious DiseasesMedicine Institute, Cleveland ClinicClevelandUSA

Personalised recommendations