Geodesic Rewriting Systems and Pregroups

  • Volker Diekert
  • Andrew J. Duncan
  • Alexei G. Myasnikov
Part of the Trends in Mathematics book series (TM)

Abstract

In this paper we study rewriting systems for groups and monoids, focusing on situations where finite convergent systems may be difficult to find or do not exist. We consider systems which have no length increasing rules and are confluent and then systems in which the length reducing rules lead to geodesics. Combining these properties we arrive at our main object of study which we call geodesically perfect rewriting systems. We show that these are well behaved and convenient to use, and give several examples of classes of groups for which they can be constructed from natural presentations. We describe a Knuth-Bendix completion process to construct such systems, show how they may be found with the help of Stallings’ pregroups and conversely may be used to construct such pregroups.

Mathematics Subject Classification (2000)

68Q42 20F05 20M32 20E06 

Keywords

String rewriting systems Geodesically Perfect Knuth-Bendix Stallings pregroups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Abramenko and K.S. Brown. Buildings, volume 248 of Graduate Texts in Mathematics. Springer, New York, 2008. Theory and applications.Google Scholar
  2. [2]
    J. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, and H. Short. Notes on word hyperbolic groups. Group Theory from a geometric viewpoint. World Scientific, Singapore, 1990.Google Scholar
  3. [3]
    G. Arzhantseva. An algorithm detecting Dehn presentations. Preprint, 2000.Google Scholar
  4. [4]
    A. Björner and F. Brenti. Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics. Springer, New York, 2005.Google Scholar
  5. [5]
    L.A. Bokut and L.-S. Shiao. Gröbner-Shirshov bases for Coxeter groups. Comm. Algebra, 29(9):4305–4319, 2001. Special issue dedicated to Alexei Ivanovich Kostrikin.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    R. Book and F. Otto. String-rewriting systems. Texts and monographs in computer science. Springer-Verlag, 1993.Google Scholar
  7. [7]
    R.V. Book. Confluent and other types of Thue systems. Journal of the Association for Computing Machinery, 29(1):171–182, 1982.MATHMathSciNetGoogle Scholar
  8. [8]
    M.A. Borges-Trenard and H. Pérez-Rosés. Complete presentations of Coxeter groups. Appl. Math. E-Notes, 4:1–6 (electronic), 2004.MATHMathSciNetGoogle Scholar
  9. [9]
    N. Bourbaki. Lie groups and Lie algebras. Chapters 4–6. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley.Google Scholar
  10. [10]
    B. Buchberger. An algorithm for finding the basis elements of the residue class ring of a zero-dimensional polynomial ideal. J. Symbolic Comput., 41(3–4):475–511, 2006. Translated from the 1965 German original by Michael P. Abramson.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts in Mathematics. Springer, New York, third edition, 2007. An introduction to computational algebraic geometry and commutative algebra.Google Scholar
  12. [12]
    M.W. Davis. The geometry and topology of Coxeter groups, volume 32 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2008.Google Scholar
  13. [13]
    V. Diekert. Commutative monoids have complete presentations by free (non-commutative) monoids. Theoretical Computer Science, 46:319–327, 1986.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    V. Diekert. Complete semi-Thue systems for abelian groups. Theoretical Computer Science, 44:199–208, 1986.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    V. Diekert. Some remarks on presentations by finite Church-Rosser Thue systems. In F.J. Brandenburg, G. Vidal-Naquet, and M. Wirsing, editors, Proc. 4th Annual Symposium on Theoretical Aspects of Computer Science (STACS’87), Passau (Germany), 1987, number 247 in Lecture Notes in Computer Science, pages 272–285, Heidelberg, 1987. Springer-Verlag.Google Scholar
  16. [16]
    V. Diekert. Two contributions to the theory of finite replacement systems. Report TUM-I8710, Institut für Informatik der Technischen Universität München, 1987.Google Scholar
  17. [17]
    V. Diekert. On the Knuth-Bendix completion for concurrent processes. Theoretical Computer Science, 66:117–136, 1989.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    V. Diekert. Combinatorics on Traces. Number 454 in Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 1990.MATHGoogle Scholar
  19. [19]
    F. du Cloux. A transducer approach to Coxeter groups. J. Symbolic Comput., 27(3):311–324, 1999.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, and W.P. Thurston. Word Processing in Groups. Jones and Bartlett, Boston, 1992.MATHGoogle Scholar
  21. [21]
    D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, and W.P. Thurston. Word processing in groups. Jones and Bartlett Publishers, 1992.Google Scholar
  22. [22]
    E.S. Esyp, I.V. Kazatchkov, and V.N. Remeslennikov. Divisibility theory and complexity of algorithms for free partially commutative groups. In Groups, languages, algorithms, volume 378 of Contemp. Math., pages 319–348. Amer. Math. Soc., Providence, RI, 2005.Google Scholar
  23. [23]
    R.H. Gilman. Computations with rational subsets of confluent groups. In J. Fitch, editor, EUROSAM, volume 174 of Lecture Notes in Computer Science, pages 207–212. Springer, 1984.Google Scholar
  24. [24]
    R.H. Gilman, S. Hermiller, D.F. Holt, and S. Rees. A characterisation of virtually free groups. Arch. Math. (Basel), 89(4):289–295, 2007.MATHMathSciNetGoogle Scholar
  25. [25]
    O. Goodman and M. Shapiro. On a generalization of Dehn’s algorithm. International Journal of Algebra and Computation, 18:1137–1177, 2008.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    C.M. Gordon, D.D. Long, and A.W. Reid. Surface subgroups of Coxeter and Artin groups. J. Pure Appl. Algebra, 189(1–3):135–148, 2004.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    S. Hermiller and J. Meier. Algorithms and geometry for graph products of groups. J. Algebra, 171(1):230–257, 1995.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    S.M. Hermiller. Rewriting systems for Coxeter groups. J. Pure Appl. Algebra, 92(2):137–148, 1994.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    A.H.M. Hoare. Pregroups and length functions. Math. Proc. Cambridge Philos. Soc., 104(1):21–30, 1988.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    D.F. Holt, B. Eick, and E.A. O’Brien. Handbook of computational group theory. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2005.MATHCrossRefGoogle Scholar
  31. [31]
    M. Jantzen. Confluent String Rewriting, volume 14 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1988.Google Scholar
  32. [32]
    M. Kambites and F. Otto. Church-Rosser groups and growing context-sensitive groups. Journal of Automata, Languages and Combinatorics, 2008. To appear.Google Scholar
  33. [33]
    D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras. In Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages 263–297. Pergamon, Oxford, 1970.Google Scholar
  34. [34]
    P. le Chenadec. Canonical Forms in Finitely Presented Algebras. Research Notes in Theoretical Computer Science. Pitman Publishing, Ltd., London-Boston, Mass, 1986.MATHGoogle Scholar
  35. [35]
    R. Lyndon and P. Schupp. Combinatorial Group Theory. Classics in Mathematics. Springer, 2001.Google Scholar
  36. [36]
    W. Magnus, A. Karrass, and D. Solitar. Combinatorial Group Theory. Springer-Verlag, 1977.Google Scholar
  37. [37]
    D.E. Muller and P.E. Schupp. Groups, the theory of ends, and context-free languages. Journal of Computer and System Sciences, 26:295–310, 1983.MATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    P. Narendran and R. McNaughton. The undecidability of the preperfectness of Thue systems. Theoret. Comput. Sci., 31(1–2):165–174, 1984.MATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    P. Narendran and F. Otto. Preperfectness is undecidable for Thue systems containing only length-reducing rules and a single commutation rule. Information Processing Letters, 29:125–130, 1988.MATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    M.H.A. Newman. On theories with a combinatorial definition of “equivalence.”. Ann. of Math. (2), 43:223–243, 1942.CrossRefMathSciNetGoogle Scholar
  41. [41]
    M. Nivat and M. Benois. Congruences parfaites et quasi-parfaites. Technical Report 25e Année, Seminaire Dubreil, Paris, 1971/72.Google Scholar
  42. [42]
    C. Ó’Dúnlaing. Undecidable questions related to Church-Rosser Thue systems. Theoret. Comput. Sci., 23(3):339–345, 1983.CrossRefMathSciNetGoogle Scholar
  43. [43]
    F. Otto and Y. Kobayashi. Properties of monoids that are presented by finite convergent string-rewriting systems — A survey. In Advances in Algorithms, Languages, and Complexity, pages 225–266, 1997.Google Scholar
  44. [44]
    F. Rimlinger. A subgroup theorem for pregroups. In Combinatorial group theory and topology (Alta, Utah, 1984), volume 111 of Ann. of Math. Stud., pages 163–174. Princeton Univ. Press, Princeton, NJ, 1987.Google Scholar
  45. [45]
    A.I. Shirshov. Some algorithm problems for Lie algebras. Sibirsk. Mat. Ž., 3:292–296, 1962.MATHMathSciNetGoogle Scholar
  46. [46]
    C.C. Sims. Computation with finitely presented groups. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1994.Google Scholar
  47. [47]
    C. Squier. Word problems and a homological finiteness condition for monoids. J. of Pure and Applied Algebra, 49:201–217, 1987.MATHCrossRefMathSciNetGoogle Scholar
  48. [48]
    C. Squier, F. Otto, and Y. Kobayashi. A finiteness condition for rewriting systems. Theoretical Computer Science, 131, 1994.Google Scholar
  49. [49]
    J. Stallings. Group theory and three-dimensional manifolds. Yale University Press, New Haven, Conn., 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1969, Yale Mathematical Monographs, 4.Google Scholar
  50. [50]
    J.R. Stallings. Adian groups and pregroups. In Essays in group theory, volume 8 of Math. Sci. Res. Inst. Publ., pages 321–342. Springer, New York, 1987.Google Scholar
  51. [51]
    J. Tits. Le problème des mots dans les groupes de Coxeter. In Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1, pages 175–185. Academic Press, London, 1969.Google Scholar
  52. [52]
    L. VanWyk. Graph groups are biautomatic. J. Pure Appl. Algebra, 94(3):341–352, 1994.CrossRefMathSciNetGoogle Scholar
  53. [53]
    C. Wrathall. The word problem for free partially commutative groups. Journal of Symbolic Computation, 6(1):99–104, 1988.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Volker Diekert
    • 1
  • Andrew J. Duncan
    • 2
  • Alexei G. Myasnikov
    • 3
  1. 1.Universität StuttgartStuttgartGermany
  2. 2.Newcastle UniversityNewcastle upon TyneUK
  3. 3.McGill UniversityMontrealCanada

Personalised recommendations