On Positive Solutions of p-Laplacian-type Equations

  • Yehuda Pinchover
  • Kyril Tintarev
Part of the Operator Theory: Advances and Applications book series (OT, volume 193)


Let Ω be a domain in ℝ d , d ≥ 2, and 1 < p < ∞. Fix V loc (Ω). Consider the functional Q and its Gâteaux derivative Q′ given by
$$ Q(u): = \tfrac{1} {p}\int_\Omega {(|\nabla u|^p + V|u|^p )dx, Q'(u): = - \nabla \cdot (|\nabla u|^{p - 2} \nabla u) + V|u|^{p - 2} u.} $$
In this paper we discuss a few aspects of relations between functional-analytic properties of the functional Q and properties of positive solutions of the equation Q′ (u)=0.

Mathematics Subject Classification (2000)

Primary 35J60 Secondary 35J20 35J70 49R50 


Quasilinear elliptic operator p-Laplacian ground state positive solutions comparison principle minimal growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Agmon, Bounds on exponential decay of eigenfunctions of Schrödinger operators, in “Schrödinger Operators” (Como, 1984), pp. 1–38, Lecture Notes in Math. 1159, Springer, Berlin, 1985.Google Scholar
  2. [2]
    G. Alessandrini, and M. Sigalotti, Geometric properties of solutions to the anisotropic p-Laplace equation in dimension two, Ann. Acad. Sci. Fenn. Math. 26 (2001), 249–266.zbMATHMathSciNetGoogle Scholar
  3. [3]
    W. Allegretto, and Y.X. Huang, A Picone’s identity for the p-Laplacian and applications, Nonlinear Anal. 32 (1998), 819–830.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    W. Allegretto, and Y.X. Huang, Principal eigenvalues and Sturm comparison via Picone’s identity, J. Differential Equations 156 (1999), 427–438.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    M. Cuesta, and P. Takáč, A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations 13 (2000), 721–746.zbMATHMathSciNetGoogle Scholar
  6. [6]
    J.I. Diaz, and J.E. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Ser. I Math. 305 (1987), 521–524.zbMATHMathSciNetGoogle Scholar
  7. [7]
    L. Damascelli, and B. Sciunzi, Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations, Calc. Var. Partial Differential Equations 25 (2006), 139–159.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    M. del Pino, M. Elgueta, and R. Manasevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u|p−2 u′)′+f(t, u)=0, u(0)=u(T)=0, p>1, J. Differential Equations 80 (1989), 1–13.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    P. Drábek, A. Kufner, and F. Nicolosi, “Quasilinear Elliptic Equations with Degenerations and Singularities”, Gruyter Series in Nonlinear Analysis and Applications 5, Walter de Gruyter & Co., Berlin, 1997.Google Scholar
  10. [10]
    I. Ekeland, and R. Temam, “Convex Analysis and Variational Problems”, North Holland—American Elsevier, Amsterdam, 1976.zbMATHGoogle Scholar
  11. [11] S. Filippas, V. Maz’ya, and A. Tertikas, Critical Hardy-Sobolev inequalities. J. Math. Pures Appl. (9) 87 (2007), 37–56.Google Scholar
  12. [12]
    J. Fleckinger-Pellé, J. Hernández, P. Takáč, and F. de Thélin, Uniqueness and positivity for solutions of equations with the p-Laplacian, Proceedings of the Conference on Reaction-Diffusion Equations (Trieste, 1995), pp. 141–155, Lecture Notes in Pure and Applied Math. Vol. 194, Marcel Dekker, New York, 1998.Google Scholar
  13. [13]
    J. García-Melián, and J. Sabina de Lis, Maximum and comparison principles for operators involving the p-Laplacian, J. Math. Anal. Appl. 218 (1998), 49–65.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    O.A. Ladyženskaja, and N.N. Ural’ceva, A variational problem for quasilinear elliptic equations with many independent variables, Soviet Math. Dokl. 1 (1960), 1390–1394.MathSciNetGoogle Scholar
  15. [15]
    V. Liskevich, S. Lyakhova, and V. Moroz, Positive solutions to nonlinear p-Laplace equations with Hardy potential in exterior domains, J. Differential Equations 232 (2007), 212–252.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    M. Lucia, and S. Prashanth, Strong comparison principle for solutions of quasilinear equations, Proc. Amer. Math. Soc. 132 (2004), 1005–1011.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    J.J. Manfredi, Isolated singularities of p-harmonic functions in the plane, SIAM J. Math. Anal. 22 (1991), 424–439.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    M. Marcus, V.J. Mizel, and Y. Pinchover, On the best constant for Hardy’s inequality in ℝn, Trans. Amer. Math. Soc. 350 (1998), 3237–3255.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    M. Marcus, and I. Shafrir, An eigenvalue problem related to Hardy’s L p inequality, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), 581–604.Google Scholar
  20. [20]
    Mitidieri, and S.I. Pokhozhaev, Some generalizations of Bernstein’s theorem, Differ. Uravn. 38 (2002), 373–378; translation in Differ. Equ. 38 (2002), 392–397.MathSciNetGoogle Scholar
  21. [21]
    M. Murata, Structure of positive solutions to (−Δ+V )u=0 in ℝn, Duke Math. J. 53 (1986), 869–943.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Y. Pinchover, On positive solutions of second-order elliptic equations, stability results, and classification, Duke Math. J. 57 (1988), 955–980.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Y. Pinchover, On criticality and ground states of second-order elliptic equations, II, J. Differential Equations 87 (1990), 353–364.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Y. Pinchover, A Liouville-type theorem for Schrödinger operators, Comm. Math. Phys. 272 (2007) 75–84.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Y. Pinchover, Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations, in “ Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday”, Proceedings of Symposia in Pure Mathematics 76, American Mathematical Society, Providence, RI, 2007, 329–356.Google Scholar
  26. [26]
    Y. Pinchover, A. Tertikas, and K. Tintarev, A Liouville-type theorem for the p-Laplacian with potential term, Ann. Inst. H. Poincaré-Anal. Non Linéaire 25 (2008), 357–368.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Y. Pinchover, and K. Tintarev, Ground state alternative for singular Schrödinger operators, J. Functional Analysis, 230 (2006), 65–77.zbMATHMathSciNetGoogle Scholar
  28. [28]
    Y. Pinchover, and K. Tintarev, Ground state alternative for p-Laplacian with potential term, Calc. Var. Partial Differential Equations 28 (2007), 179–201.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    Y. Pinchover, and K. Tintarev, On positive solutions of minimal growth for singular p-Laplacian with potential term, Adv. Nonlinear Stud. 8 (2008), 213–234.zbMATHMathSciNetGoogle Scholar
  30. [30]
    Y. Pinchover, and K. Tintarev, On the Hardy-Sobolev-Maz’ya inequality and its generalizations, in “Sobolev Spaces in Mathematics I: Sobolev Type Inequalities”, ed. V. Maz’ya, International Mathematical Series 8, Springer, 2009, 281–297.Google Scholar
  31. [31]
    A. Poliakovsky, and I. Shafrir, Uniqueness of positive solutions for singular problems involving the p-Laplacian, Proc. Amer. Math. Soc. 133 (2005), 2549–2557.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    P. Pucci, and J. Serrin, “The Maximum Principle”, Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser Verlag, Basel, 2007.zbMATHGoogle Scholar
  33. [33]
    W. Rudin, “Functional Analysis”, 2nd ed., McGraw-Hill, Inc., New York, 1991.zbMATHGoogle Scholar
  34. [34]
    J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302.zbMATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    J. Serrin, Isolated singularities of solutions of quasi-linear equations, Acta Math. 113 (1965), 219–240.zbMATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    P. Takáč, and K. Tintarev, Generalized minimizer solutions for equations with the p-Laplacian and a potential term, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 201–221.zbMATHMathSciNetGoogle Scholar
  37. [37]
    P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations 8 (1983), 773–817.zbMATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126–150.zbMATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    M. Troyanov, Parabolicity of manifolds, Siberian Adv. Math. 9 (1999), 125–150.zbMATHMathSciNetGoogle Scholar
  40. [40]
    M. Troyanov, Solving the p-Laplacian on manifolds, Proc. Amer. Math. Soc. 128 (2000), 541–545.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Yehuda Pinchover
    • 1
  • Kyril Tintarev
    • 2
  1. 1.Department of MathematicsTechnion - Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations