Bortezomib-Induced Peripheral Neuropathy in Multiple Myeloma: Principles of Identification and Management

  • Jacob P. LaubachEmail author
  • Paul G. Richardson
Part of the Milestones in Drug Therapy book series (MDT)


The first-in-class proteasome inhibitor bortezomib is a potent anti-myeloma drug that now figures prominently in the management of patients with both newly diagnosed and relapsed multiple myeloma. With current studies evaluating its efficacy as part of conditioning prior to and maintenance therapy following autologous stem cell transplantation, it is likely that its role in the management of the disease will expand further. Peripheral neuropathy was recognized as a toxicity associated with bortezomib at an early point in the clinical development of the agent, and further study has provided considerable insight regarding this issue. It is critical that clinicians recognize and appropriately manage bortezomib-induced PN to optimize care for patients. This chapter focuses on the identification, characterization, and management of bortezomib-induced peripheral neuropathy.


Multiple Myeloma Dorsal Root Ganglion Peripheral Neuropathy Carpal Tunnel Syndrome Dorsal Root Ganglion Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498PubMedCrossRefGoogle Scholar
  2. 2.
    San Miguel JF, Schlag R, Khuageva NK et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359:906–917PubMedCrossRefGoogle Scholar
  3. 3.
    Roussel M, Moreau P, Huynh A et al (2010) Bortezomib and high-dose melphalan as conditioning regimen before autologous stem cell transplantation in patients with de novo multiple myeloma: a phase 2 study of the Intergroupe Francophone du Myelome (IFM). Blood 115:32–37PubMedCrossRefGoogle Scholar
  4. 4.
    Magarotto V, Palumbo A (2009) Evolving role of novel agents for maintenance therapy in myeloma. Cancer J 15:494–501PubMedCrossRefGoogle Scholar
  5. 5.
    Orlowski RZ, Stinchcombe TE, Mitchell BS et al (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20:4420–4427PubMedCrossRefGoogle Scholar
  6. 6.
    Richardson PG, Barlogie B, Berenson J et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617PubMedCrossRefGoogle Scholar
  7. 7.
    Jagannath S, Barlogie B, Berenson J et al (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127:165–172PubMedCrossRefGoogle Scholar
  8. 8.
    Corso A, Mangiacavalli S, Varettoni M, Pascutto C, Zappasodi P, Lazzarino M (2010) Bortezomib-induced peripheral neuropathy in multiple myeloma: a comparison between previously treated and untreated patients. Leuk Res 34(4):471–474PubMedCrossRefGoogle Scholar
  9. 9.
    Pineda-Roman M, Zangari M, van Rhee F et al (2008) VTD combination therapy with bortezomib-thalidomide-dexamethasone is highly effective in advanced and refractory multiple myeloma. Leukemia 22:1419–1427PubMedCrossRefGoogle Scholar
  10. 10.
    Richardson PG, Weller E, Jagannath S et al (2009) Multicenter, phase I, dose-escalation trial of lenalidomide plus bortezomib for relapsed and relapsed/refractory multiple myeloma. J Clin Oncol 27(34):5713–5719PubMedCrossRefGoogle Scholar
  11. 11.
    Richardson PG, Briemberg H, Jagannath S et al (2006) Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 24:3113–3120PubMedCrossRefGoogle Scholar
  12. 12.
    Richardson PG, Xie W, Mitsiades C et al (2009) Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J Clin Oncol 27:3518–3525PubMedCrossRefGoogle Scholar
  13. 13.
    Stubblefield MD, Slovin S, MacGregor-Cortelli B et al (2006) An electrodiagnostic evaluation of the effect of pre-existing peripheral nervous system disorders in patients treated with the novel proteasome inhibitor bortezomib. Clin Oncol (R Coll Radiol) 18:410–418CrossRefGoogle Scholar
  14. 14.
    Lanzani F, Mattavelli L, Frigeni B et al (2008) Role of a pre-existing neuropathy on the course of bortezomib-induced peripheral neurotoxicity. J Peripher Nerv Syst 13:267–274PubMedCrossRefGoogle Scholar
  15. 15.
    El-Cheikh J, Stoppa AM, Bouabdallah R et al (2008) Features and risk factors of peripheral neuropathy during treatment with bortezomib for advanced multiple myeloma. Clin Lymphoma Myeloma 8:146–152PubMedCrossRefGoogle Scholar
  16. 16.
    Badros A, Goloubeva O, Dalal JS et al (2007) Neurotoxicity of bortezomib therapy in multiple myeloma: a single-center experience and review of the literature. Cancer 110:1042–1049PubMedCrossRefGoogle Scholar
  17. 17.
    Berenson JR, Jagannath S, Barlogie B et al (2005) Safety of prolonged therapy with bortezomib in relapsed or refractory multiple myeloma. Cancer 104:2141–2148PubMedCrossRefGoogle Scholar
  18. 18.
    Chaudhry V, Cornblath DR, Polydefkis M, Ferguson A, Borrello I (2008) Characteristics of bortezomib- and thalidomide-induced peripheral neuropathy. J Peripher Nerv Syst 13:275–282PubMedCrossRefGoogle Scholar
  19. 19.
    Filosto M, Rossi G, Pelizzari AM et al (2007) A high-dose bortezomib neuropathy with sensory ataxia and myelin involvement. J Neurol Sci 263:40–43PubMedCrossRefGoogle Scholar
  20. 20.
    Stubblefield MD, Burstein HJ, Burton AW et al (2009) NCCN task force report: management of neuropathy in cancer. J Natl Compr Canc Netw 7(Suppl 5):S1–S26, quiz S27–S28PubMedGoogle Scholar
  21. 21.
    Bigotte L, Arvidson B, Olsson Y (1982) Cytofluorescence localization of adriamycin in the nervous system. I. Distribution of the drug in the central nervous system of normal adult mice after intravenous injection. Acta Neuropathol 57:121–129PubMedCrossRefGoogle Scholar
  22. 22.
    Cavaletti G, Gilardini A, Canta A et al (2007) Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp Neurol 204:317–325PubMedCrossRefGoogle Scholar
  23. 23.
    Meregalli C, Canta A, Carozzi VA et al (2010) Bortezomib-induced painful neuropathy in rats: a behavioral, neurophysiological and pathological study in rats. Eur J Pain 14(4):343–350PubMedCrossRefGoogle Scholar
  24. 24.
    Casafont I, Berciano MT, Lafarga M (2010) Bortezomib induces the formation of nuclear poly(A) RNA granules enriched in Sam68 and PABPN1 in sensory ganglia neurons. Neurotox Res 17:167–178PubMedCrossRefGoogle Scholar
  25. 25.
    Pei XY, Dai Y, Grant S (2003) The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells. Leukemia 17:2036–2045PubMedCrossRefGoogle Scholar
  26. 26.
    Pei XY, Dai Y, Grant S (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 10:3839–3852PubMedCrossRefGoogle Scholar
  27. 27.
    Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT (2005) Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 65:3828–3836PubMedCrossRefGoogle Scholar
  28. 28.
    Poruchynsky MS, Sackett DL, Robey RW, Ward Y, Annunziata C, Fojo T (2008) Proteasome inhibitors increase tubulin polymerization and stabilization in tissue culture cells: a possible mechanism contributing to peripheral neuropathy and cellular toxicity following proteasome inhibition. Cell Cycle 7:940–949PubMedCrossRefGoogle Scholar
  29. 29.
    Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47:207–214PubMedCrossRefGoogle Scholar
  30. 30.
    Ajani JA, Welch SR, Raber MN, Fields WS, Krakoff IH (1990) Comprehensive criteria for assessing therapy-induced toxicity. Cancer Invest 8:147–159PubMedCrossRefGoogle Scholar
  31. 31.
    Oken MM, Creech RH, Tormey DC et al (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5:649–655PubMedCrossRefGoogle Scholar
  32. 32.
    Institute NC (2006) National Cancer Institute-Common Terminology Criteria for Adverse Events (NCI-CTCAE), version 3.0. Available at:
  33. 33.
    Cavaletti G, Jann S, Pace A et al (2006) Multi-center assessment of the total neuropathy score for chemotherapy-induced peripheral neurotoxicity. J Peripher Nerv Syst 11:135–141PubMedCrossRefGoogle Scholar
  34. 34.
    Cavaletti G, Frigeni B, Lanzani F et al (2007) The Total Neuropathy Score as an assessment tool for grading the course of chemotherapy-induced peripheral neurotoxicity: comparison with the National Cancer Institute-Common Toxicity Scale. J Peripher Nerv Syst 12:210–215PubMedCrossRefGoogle Scholar
  35. 35.
    Postma TJ, Heimans JJ, Muller MJ, Ossenkoppele GJ, Vermorken JB, Aaronson NK (1998) Pitfalls in grading severity of chemotherapy-induced peripheral neuropathy. Ann Oncol 9:739–744PubMedCrossRefGoogle Scholar
  36. 36.
    Calhoun EA, Welshman EE, Chang CH et al (2003) Psychometric evaluation of the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity (Fact/GOG-Ntx) questionnaire for patients receiving systemic chemotherapy. Int J Gynecol Cancer 13:741–748PubMedCrossRefGoogle Scholar
  37. 37.
    Hausheer FH, Schilsky RL, Bain S, Berghorn EJ, Lieberman F (2006) Diagnosis, management, and evaluation of chemotherapy-induced peripheral neuropathy. Semin Oncol 33:15–49PubMedCrossRefGoogle Scholar
  38. 38.
    du Bois A, Schlaich M, Luck HJ et al (1999) Evaluation of neurotoxicity induced by paclitaxel second-line chemotherapy. Support Care Cancer 7:354–361PubMedCrossRefGoogle Scholar
  39. 39.
    Richardson PG, Sonneveld P, Schuster MW et al (2009) Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. Br J Haematol 144:895–903PubMedCrossRefGoogle Scholar
  40. 40.
    Cleary JF (2007) The pharmacologic management of cancer pain. J Palliat Med 10:1369–1394PubMedCrossRefGoogle Scholar
  41. 41.
    Colvin LA, Johnson PR, Mitchell R, Fleetwood-Walker SM, Fallon M (2008) From bench to bedside: a case of rapid reversal of bortezomib-induced neuropathic pain by the TRPM8 activator, menthol. J Clin Oncol 26:4519–4520PubMedCrossRefGoogle Scholar
  42. 42.
    Mateos M, Oriol A, Martinez J et al (2009) A prospective, multicenter, randomized trial of bortezomib/melphalan/prednisone (VMP) versus bortezomib/thalidomide/prednisone (VTP) as induction therapy followed by maintenance treatment with bortezomib/thalidomide (VT) versus bortezomib/prednisone (VP) in elderly untreated patients with multiple myeloma older than 65 years. Abstract 3. Blood 114:3CrossRefGoogle Scholar
  43. 43.
    Reeder C, Reece D, Kukreti V et al (2009) A phase II trial comparison of once versus twice weekly bortezomib in CYBORD chemotherapy for newly diagnosed myeloma: identical high response rates and less toxicity. Abstract 616. Blood 114:255Google Scholar
  44. 44.
    Ziegler D, Hanefeld M, Ruhnau KJ et al (1995) Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia 38:1425–1433PubMedCrossRefGoogle Scholar
  45. 45.
    Packer L, Kraemer K, Rimbach G (2001) Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition 17:888–895PubMedCrossRefGoogle Scholar
  46. 46.
    Ziegler D, Hanefeld M, Ruhnau KJ et al (1999) Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care 22:1296–1301PubMedCrossRefGoogle Scholar
  47. 47.
    Vahdat L, Papadopoulos K, Lange D et al (2001) Reduction of paclitaxel-induced peripheral neuropathy with glutamine. Clin Cancer Res 7:1192–1197PubMedGoogle Scholar
  48. 48.
    Wang WS, Lin JK, Lin TC et al (2007) Oral glutamine is effective for preventing oxaliplatin-induced neuropathy in colorectal cancer patients. Oncologist 12:312–319PubMedCrossRefGoogle Scholar
  49. 49.
    Jin HW, Flatters SJ, Xiao WH, Mulhern HL, Bennett GJ (2008) Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-L-carnitine: effects on axonal mitochondria, sensory nerve fiber terminal arbors, and cutaneous Langerhans cells. Exp Neurol 210:229–237PubMedCrossRefGoogle Scholar
  50. 50.
    Ang CD, Alviar MJ, Dans AL et al (2008) Vitamin B for treating peripheral neuropathy. Cochrane Database Syst Rev Issue 3:CD004573Google Scholar
  51. 51.
    Argyriou AA, Chroni E, Koutras A et al (2006) Preventing paclitaxel-induced peripheral neuropathy: a phase II trial of vitamin E supplementation. J Pain Symptom Manage 32:237–244PubMedCrossRefGoogle Scholar
  52. 52.
    Gdynia HJ, Muller T, Sperfeld AD et al (2008) Severe sensorimotor neuropathy after intake of highest dosages of vitamin B6. Neuromuscul Disord 18:156–158PubMedCrossRefGoogle Scholar
  53. 53.
    Zou W, Yue P, Lin N et al (2006) Vitamin C inactivates the proteasome inhibitor PS-341 in human cancer cells. Clin Cancer Res 12:273–280PubMedCrossRefGoogle Scholar
  54. 54.
    Perrone G, Hideshima T, Ikeda H et al (2009) Ascorbic acid inhibits antitumor activity of bortezomib in vivo. Leukemia 23:1679–1686PubMedCrossRefGoogle Scholar
  55. 55.
    O’Connor OA, Stewart AK, Vallone M et al (2009) A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin Cancer Res 15:7085–7091PubMedCrossRefGoogle Scholar
  56. 56.
    Richardson P, Hofmeister C, Jakubowiak A et al (2009) Phase 1 clinical trial of the novel structure proteasome inhibitor NPI-0052 in patients with relapsed and relapsed/refractory multiple myeloma (MM). Abstract 431. Blood 114:179Google Scholar
  57. 57.
    Lacy MQ, Hayman SR, Gertz MA et al (2009) Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J Clin Oncol 27:5008–5014PubMedCrossRefGoogle Scholar
  58. 58.
    Dimopoulos M, Spencer A, Attal M et al (2007) Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 357:2123–2132PubMedCrossRefGoogle Scholar
  59. 59.
    Mitsiades CS, Mitsiades NS, McMullan CJ et al (2006) Antimyeloma activity of heat shock protein-90 inhibition. Blood 107:1092–1100PubMedCrossRefGoogle Scholar
  60. 60.
    Richardson PG, Chanan-Khan A, Lonial S et al (2009) Tanespimycin plus bortezomib in patients with relapsed and refractory multiple myeloma: final results of a phase I/II study. Abstract 8503. J Clin Oncol 27:434sGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Dana-Farber Cancer InstituteBostonUSA

Personalised recommendations